Altair Embed’

Altair Embed 2022.1

User Guide
Copyright © 2022 Altair Engineering, Inc. All rights reserved.

J\ ALTAIR

Contents

Contents

Introduction 1
What you get With EMDEAcooiiiiiiiiii e 16
NEW FEAIUIES ...ttt e e e st e e e e e e s et b b e e e e e e e e s anenbeeeeaaeeeas 16
Resources for learning EMDedc..ooiiiiiiiiiiiie e 17

Online and 10Cal NEIPeeiiiiiee e 17
V410 [T LS PP PR 18
SaAMPIE AIAGIAMS .eeeeieeiii e e e a e e e 18
=T L1 o= ST UT o] o] o S SRR 18
The Altair Embed product family ... 18
Professional and BasiC ditiONSccoiiuuiieiiiiiie i 18
Special-purpose add-0n MOAUIESevvviiiiiiiiiiiieieeieeeeeeeeeeeeeeeee e eeeaeaees 20
EMBDEA VIBWET ...ttt e e e e e e s 20

Quick Start 21
Accessing the Chip Temp sample diagram ..., 21
Compiling the SOUICE QIAQIAIMuuueriieeeieieieieeeeeeeeeaeeeeeeseeeeeeeeererererererererrrrrererrrrrrrn. 23
Downloading and debuggingceevviiiiiiiiiiiiieiieeeeeeeeeeee e 25
Setting diagram ParamMEtErS.uuueieuereeeeeeeeeeeerereeerrearrreerrrerrrrr————————————————————————————. 28
Running the diagram and VIEWING reSUIScvviviiiiiiiiieiiieieieeeeeeeeeeeeeveee e eeeaaeeees 28

Model-Based Development with Embed 31
Software-in-the-Loop SIMUIALIONuviiiiiiiieieieieieieieieieeeeeee e 31

Embedded diagrams........ccooooioiiiiiice e 32
Y @feTo [T €Ty I - Yo H SRRSO 32
Processor-in-the-Loop SIMUIALIONceviiiiiiiiiiieiiieeeeeeeeeeeeeeeee e eaeaeaeees 32
Interfacing with code running on Arduino, ARM Cortex M3, Linux Raspberry
Pi, C2000, and STM32 JEVICESccceeiiiiiiiiiiiieae it 32
Source and debug diagrams for Arduino, ARM Cortex M3, Linux Raspberry
Pi, C2000, and STM32 targetS......cueeeieiiciiiireieeeieeeiiieereee e e seeeeeeeeeee e s snneeeeees 33
CommuNICAtioN INEITACESvviieiieii e 34
Measuring CPU ULIHZALION...........oiiiiiiii e 35
Hardware-in-the-Loop SIMUIALION...........ccoiiiiii e 35
High power safety CONCEINS.......ccoooiii i 36
Automatically Generating Executable Code 37
TAIGETL SUPPOIT. ... s 37
Resources used DY targetsovoiiiiioii e 37
Target resources managed by Embedccccoiiiiiiiii e 38
Generic MCU target SUPPOIt........uveieeiiiiee ettt ee et e e seeee e 38
Preparing a diagram for code generationcccooiueiieiiieie e 39
Configure the targeteeeiiiieee e 39
Configure the compound block to communicate with the target.................... 39
Targets with no floating-point UNit..............cccooiiii e, 39
Target devices with No file SYStemM ..., 39
Variable NAMES ...t 39
Speed CONSIAEIALIONSeiiiiiii it ee e e e 39
Code generation considerations for low RAM targetscccccvoveeeiiiieennnns 40
Determine stack and heap USEcuueviiiiiiiiiiiiie e 40

i 2022.1 Embed

Contents

Blocks that generate stand-alone C COde........c.uvviiiiiieiiiiiie e 41
Generating and downloading code to target deViCes.........covevevieiiniiiiiiieeeee e, 47
Generate and download code to run in RAM on ARM Cortex M3, Linux, and
10724010 [0 =1 {0 = £ S PSP PPPPPT R PPRPPRt 47
Generate and download code to run in FLASH on Arduino, MSP430, and
STMB2 AIJELS ..oiiiiiiiiei ettt e e e e e e ee it e aaee 50
Generate and download code to run in FLASH in batch mode 51
Using the code generation parameters.........cccccceeeveiiciiieeeeeeesesciiieeeeeeeeesnnes 51
Displaying Coff infOrmationccceveiiiiiiei e 53
SUPPOITTIBFAIY ..o 54
Flashing generated code with UniFlash...........c.cceoiiiiiiiiec e, 54
Controlling execution on embedded targets ... 58
Create custom-rate fUNCLIONSccuviiiiiiie e 58
Set the sample rate for the target applicationcccceeeviieeeiiiiiee s 59
Read and write directly to device registersocvvvveereiiiiiciieeee e, 59
COoNtrol @XECULION OFTENvvieieiiiiee sttt e s sereeeeane 59
Execute initialization code at boot tiMe ..., 60
Debugging code on embedded targetS.........uuviiiiiiiiiiiiiiiiiiieeeeeieeeeeeeee e 60
Debugging tEChNIQUESccoeee e 60
Debugging code on Arduino, ARM Cortex M3, Linux, C2000, and STM32
L6210 12 64
Using serial monitor to debug code on Arduino targetS..........occcvvevvereerinnnnnns 65
Debugging real-time analog waveforms using the Arduino serial port.......... 71
Running generated code on HIL hardwarecoooieiieiiiiie e 71
Integrating handwritten code with generated COdeocovviiiiiiiiiiee i 71
Calling the generated code from a user applicationceevvvvveveeeveennnnns 72
Using Extern Read and Extern Write blocks to merge your code 72
Using Extern Definition and Extern Function blocks to add a C function to
YOUF QIAGIAM L.uutiiiiiiiiii s 72
Generating code from cUStOM DIOCKSvviiiiiiiiiiiiiiiiiiieieieieeeeeeeee e aeaeeeees 72
Y=Y 1 (o T T T PPt 73
Using the Target Support Blocks and Commands 75
Using the target support BIOCKSooovviiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee e 75
F N L @31 0 R PRPP 75
Analog Comparator DACuu s 76
ANIOG N 1t 78
ANAIOY TNPUL ...t s 78
CAN RECERIVE. ...ttt e e e e e e e e 80
(0 2 (NI I = 1 1] 0 SR 81
CAN TranSmMit REAAYccciiuiiiiiiiiiee ittt 82
COMPATALOL ...ttt e e e e e e r e e e e e e s e eeeae e s 83
DA PSR STPRR 83
DA 31 2 PP 86
DIGItAl IN ... ———————————— 87
DIGItal INPUL ..ot e e e 87
D] To 1 =1 @ 11 | PP RTTT SRR 88
DiIgital OULPUL ...ttt e e e e ee e 89
DMA ENADIE ... 90
=T O AN = R UUPRPRPPRR 91
AP PWM ...ttt 91
L] VAT N 92
oV Y A 1T SR 98
EPWM ACHON WIIEE ..ottt e e e e e e e s ee e e e an 99
EPWM CROPPET ... 100
2022.1 Embed iii

Contents

EPWM FOICE ACHON ...ttt e e e 100
EPWM FOrce ACHON WIEE.....ciiiiiiiiiiiiiie et 101
EPWM fOr SIMUIALIONoiiiiiiii i 101
BB e 102
EQEP fOr SIMUIALIONevvviiiiiiiiiiiiiiiiiieieeeeieeee et eeeeeeevererereeesarsserersrerarrraee 103
EVENE CAPIUIE c.ueiieec et e e e e e b e e e e e s eeaenes 103
EXIErN DefiNitiON........oeiiiiiiiee e s 104
EXIEIN FUNCHON ...ooiiiiiee e e 105
Q=] 1 I 2 L= To SRR PURRRP 107
EXTEIN WITEE .eeeiiieie ettt ettt e e e e e e s et ee e e e e e s enenes 108
FUIl COMPAre ACHION ..coeiiiiieeiitiie et 109
FUIl ComMPare PWMcooiiiiiiiiiiee ittt 109
GEE CPU USAQE ..oeeiiiiiiiiiiei ettt e e 111
€1 2 1 | o TSRS 111
€1 (@ [o] o 11 | S SRR 112
€12 (@ 1@ 1| PP PRTRPP 114
(€12 (@ 1@ U1 1 o1 | SRR 115
HAUI SENSOT.....ciiiiiii e e e e 117
HRCAP .. et e e et e e e et e e e 117
1L @ 1Y =0 0T Y == o 118
/O MEMOIY WIIEE ..ot 118
DO R LT To [= U 1 = S UPRRPR 118
[2C Start COMMUNICALION ...t e e e e e e e eeees 119
[2C WItE BUFFEI . 120
Y11 USSP 120
Monitor Buffer EMPLY ..o 121
MonNitor BUffer REA........coooiiiiiiiiiiiiieee e 122
MONILOr BUFFEr WIEEeeeiieeeie et 122
MQOTT PUDBIISI ..o e 123
MQTT SUDSCHDE ... 124
(O] o 1 0] o SO PRPPP 126
PWIM et e e a e e e e e 127
PWM fOr SIMUIALIONeeiiiieeeieceiieeee et 135
QuAadrature ENCOAENuueiiiieeei et e e e e ee e e e 136
Read Target MEMIOIYuuiiiiiiie e 138
T TSRS 138
SDLBA .o e e a et —a e e aaraaaas 139
SEOMENILECD ...t 139
Serial UART REAMAcooiiiieiiiee ettt 140
Serial UART WL ..ooii ittt e 140
SEEPWIM MOUEceiiiiiiiiie ettt e e s snnaee s 141
Sigma Delta Filter MOAUIE..............ovvviiiiiiieieiieiiiieeieeeeeeeeeee e eeeaaaeeeees 142
SPIREAG. ... ceiiiiiieiie ettt 144
Y S Y (= USSP 147
U] =T Vo PRSPPI 149
UDP WL 1.ttt ittt ettt ettt e e sttt e e e et e e e s tae e e e ata e e e s antaaeaestaaaeeanes 150
Target INtEIACE ... ueeii i e 150
WALCKH DOQ .ttt s 152
WWED SEIVET ..ttt e et e e e e e s 152
Using the Target Config DIOCKS...........ooiiiiiii e 160
USING Arduing CONFIgcveeeeeieeeee e 161
Using ARM CorteX M3 CoNfig.......uuuieiiiiiiiiiiieiie et 162
UsiNg the LiNUX CONfig......ceeiiiiiiiiiiiiiiee e 163
Using the F240X CONfig.....ceiiiiiiiiiiiiiieeeee e 165
USING F28X CONFIg ..iteiiiiiiiiie ettt e 165
Using Generic MCU CoNfig.....ciuuieeiiiiieeeiiiiee ettt 167

2022.1 Embed

Contents

USING MSPA30 CONFIg..eiiiiitiiieiiiiiee ittt 169

USING STM32 CONFIG .trtiiiiiriiieeiiiiee ettt 173

Using the Peripheral Config BIOCKS........ccccoiiiiiiiiiiiie e 174
USING ADC CONFIg..cciiiiiiiiiiiiee ettt et e e e e e e e e e e e 174

USING CAN CONFig.ccciiiiiiiiiiii et e e e e e snraae e e e e e 182

USING DMA CONFIg oottt e e e e e e e e e e 183

Using ESP8266WIiFi CONfig.......cccvviiiiiee ettt e e e ee e e 184

Using GPIO QUAlIfICAtIONccceei i e 185

USING 12C CONTIG ..tiiiiitiiieeiiiiee ettt e b e e aaes 186

USING SDL16 CONTIQ .uteeeeiiitiieeeiiiiee ettt ettt e e bre e e b e e e eaes 188

Using Serial UART CONTIQ ..vviiiiiiiieeiiiiee ettt 189

USING SPI CONTIg. ettt 190

Using SP1 Config for ArdUINOccoiiiiiiiiiiee e 192

Using SP1 Config fOr LINUX........cueiiiiiiieeeiiiiee et 194

Using the Target Interface cCommands...........ccvvviviieeiiiiiiiiie e e 195
Using the Get Target Stack and Heap command...........cccccceevviiiiiienneeenn. 195

Using the Reset Target commandccoooeeiii, 195

Using the TI DMC Block Set 197
Similarities and differences between 16-bit and 32-bit TI DMC block 197
ACTMOLOE ... 197
ACH FIUX ESTMATOL ...ttt ettt e e e e et e e e e e e e s eabnbeeeeeeeeeas 199
ACI Speed ESIMAtOrcccoeeiiieeeee 200
Clarke TranSTOIMoo e e e e e e e e e e e s e e eas 200
CUIENE IMOTEI ...t e e e e bbbt e e e e e anneee s 201
Inverse Clarke TranSfOrM ... i 201
INverse Park TranSfOrM ... 202
Park TranSTOIMooie oo e e s e e e e e s e eenreeeeeas 202
Phase VOoRAgE CalCcocouiiiiiiiiiie e 202
QEP SPEEA ..ot 203
PID REQUIALON ... ettt ettt ettt e enb e e e e 204
RAMP GENEIALON ..eiiiiiieeite ettt r e e e 204
LR TST0] V7= T g =T o o Lo 1= RSSO 205
SMO POSItioN ESHMEALOTuueiiiiiiiiiiiiiiiieee et 206
Space Vector Generator (Magnitude/FreqUENCY)uuuurrrerrrerrerereeeeerrrererenerenenennnns 207
Space Vector Generator (Quadrature CONLIOl)uvveereiereeiiiieirerererererererererererene. 208
SPACE VECION PWM ... ittt e e e e e e e aaes 208
] 0 1=T=To I OF= 1o U] = 1 (o] PP PPPPRS 209
V/HZ Profile GENEIALON........o it 210
Using the Tl MotorWare Block Set 211
ANgle EStMator.......cooo o 211
Controller REAA PrOPEITYuuuuuiiiiiiiieiiiiiiieieieestsssesssssssasssssssssssessrsrsrersrsrerarerer.. 212
CoNtroller WItE PrOPEILYu.uvuiieieieieiiiiieieteseesssssessssssssssssssssssssssssrsrsssserensrsrsrrrrrrrrs 213
EStimator REad PrOPEITYcouii ittt 213
EStMator WHEE PrOPEITYcoiii ittt e e e e e s 213
1Y/} (o T G @0 1 o SRS 214
Using the Fixed Point Block Set 217
Fixed Point DIOCK SEL..........uiiiiiiiii e 217
[ESS TNAN ... 218

[€SS than OF €QUAI T0......eeeiiiiiieei e 219

EQUAI TO (T ettt a e 219

NOL EQUATTO (17) 1eeeii it a e 222

2022.1 Embed v

Contents

Greater than ... 223

greater than or @qUAI T0..........eeiiiiiiii e 223

O G (11=T =1 =) RSP 224

BB s 226

BN e 228

ALANZ ..oeeiiiiei 230

(00 0 1] PP 230

(070 0 1Y =T PP 231

(070 PRSP PPPTTRRRPPRPPPI 231

(O] = L O3 T RO PR 231

0 Y PR 232

[0 £= T o PP P PP PP PP PPPPPPPPPPPPPPPPPPPR 233

T 1 PRSP 234
MItedINtEGrator (1/S) ...ccoi it 236

(1= (0P PP PTPPR T 236

MU <t 237

MOT Lttt 237

0 PR 238

1 2 =T T = o) 239
PIREQUIALONo 240
SAMPIEHOI ... 240

L] 11 1 SRR 242

ST | O T PP PUPPPP 243

LS | PP UP PP PPTTRRPPRPPPI 243

150 | 244

] 0 PR 244
TraNSTEIFUNCHION ... 245
UNIEDEIAY .o 248

(] PP 250

Fixed Point Block Set Configure commandcoevviviiiiiiiiiiieeeieeeieeeieeeeeeeeeeeeeeenns 252
LI Le 4T PP PO PP PP PRPRR 253
Implementing an elevator door control SYStemcccovcveeeiiiiieeiniiee e, 253
Implementing a PID position CONtroller ..o 262
Generating DLLs 273
L1 1T 11T o = T 0 I PP PPPPPPNS 273
Calling a DLL from an Embed diagram................uevvveereeerereeeiereieiereneeenennnnnn 275
Verifying DLL FESUILSuuuieiiii s 276
Comparing Simulation SPEEMAuuviiiiiiiiiiiiiiieieeeeeeereeererererereeerererreeeea———.. 276
BUilding @ CUSIOM DLLviiiiiiiiiieiiee et 277
Generating code from automatically-generated DLLSccccccovvveieninneen. 280
TroubIESNOOLING ... 281
Generating Simulation Objects 285
Creating a Simulation ODJECT ..o 285
Communicating with an embedded simulation object............cccccoiiiiiiiiiiiiie, 287
Using the createSim funCtionoeevive i 287

Using the vsmCgRUNtimeCommandccvverireeerriiiiiiiiireee s sseieeeneeee e 287

Using the vsmCgGetLastErrorString() ..o..oovveeeevveeeeeiiiiee i 288
Sample file with simulation object interfaceccccveiiicie, 288

C Support Libraries 291
(O] o] [=Tox 8 111 TP PRPP PO 291
Targeting C code for unsupported platformsoeeeeiiiiiiii s 292

2022.1 Embed

Contents

C support library SOUICE COUEooiuiiiiiieie et 292
Compiling and linking the C support library source codecccooccuveeeieeenniicinnnenn. 293
Extending the Arduino Block Set 295
Sample diagrams that use Arduino liDrariescccveeieiiiiie i 295
Importing libraries with the Arduino Library Managercccoovvieiiiiieiiiieee e 295

Setting up libraries imported with the Arduino License Managerccccccoevvuvvenen. 296

Using the Extern Definition and Extern Function blocks.............ccccccceeeen. 296

Delay fUNCHONS ...ccouiiieeiiiiiee e 296

Example: Importing an Arduino library that displays text on an SSD1306 296
Arduino Pin Mapping 305
Arduino PWM Frequency Table 309
Index 311

2022.1 Embed vii

Introduction

Altair Embed® is a visual environment for model-based development of embedded control systems. It combines an
intuitive graphical interface with a content-rich environment to help you design real-time applications targeting a broad
variety of devices, including Arduino®, Linux® Raspberry Pi™ and AMD64™, STMicroelectronics® STM32®, and Texas
Instruments™ microcontrollers and processors.

There are several different versions of the Embed software. Click here to see what'’s included in each software package.

Intellectual property rights notice
Intellectual Property Rights Notice:

Copyright © 1986-2022 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of intellectual property rights held by Altair Engineering Inc. or its
affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are protected under laws of the United States and laws of
other jurisdictions. In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc.
or its affiliates may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other intellectual
property rights. For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held by Altair Engineering Inc.
except where otherwise explicitly stated. Additionally, all non-Altair marks are the property of their respective owners.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual property rights of
Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates is governed by and dependent on a
valid license agreement.

Altair Simulation Products

Altair® AcuSolve® ©1997-2022

Altair Activate® ©1989-2022

Altair® BatteryDesigner™ ©2019-2022

Altair Compose® ©2007-2022

Altair® ConnectMe™ ©2014-2022

Altair® EDEM™ © 2005-2022 Altair Engineering Limited, © 2019-2022 Altair Engineering Inc.
Altair® ElectroFlo™ ©1992-2022

Altair Embed® ©1989-2022

Altair Embed® SE ©1989-2022

Altair Embed®/Digital Power Designer ©2012-2022
Altair Embed® Viewer ©1996-2022

Altair® ESAComp® ©1992-2022

Altair® Feko® ©1999-2022 Altair Development S.A. (Pty) Ltd., ©1999-2022 Altair Engineering Inc.
Altair® Flow Simulator™ ©2016-2022

Altair® Flux® ©1983-2022

Altair® FluxMotor® ©2017-2022

Altair® HyperCrash® ©2001-2022

Altair® HyperGraph® ©1995-2022

Altair® HyperLife® ©1990-2022

Altair® HyperMesh® ©1990-2022

2022.1 Embed 1

Altair® HyperStudy® ©1999-2022

Altair® HyperView® ©1999-2022

Altair® HyperWorks® ©1990-2022

Altair® HyperXtrude® ©1999-2022

Altair® Inspire™ ©2009-2022

Altair® Inspire™ Cast ©2011-2022

Altair® Inspire™ Extrude Metal ©1996-2022

Altair® Inspire™ Extrude Polymer ©1996-2022

Altair® Inspire™ Form ©1998-2022

Altair® Inspire™ Friction Stir Welding ©1996-2022

Altair® Inspire™ Mold ©2009-2022

Altair® Inspire™ PolyFoam ©2009-2022

Altair® Inspire™ Play ©2009-2022

Altair® Inspire™ Print3D ©2022

Altair® Inspire™ Render ©1993-2016 Solid Iris Technologies Software Development One PLLC, © 2016-2022 Altair Engineering Inc.
Altair® Inspire™ Resin Transfer Molding ©1990-2022

Altair® Inspire™ Studio ©1993-2022

Altair® Material Data Center™ ©2019-2022

Altair® MotionSolve® ©2002-2022

Altair® MotionView® ©1993-2022

Altair® Multiscale Designer® ©2011-2022

Altair® nanoFluidX® ©2013-2022 Altair Engineering GmbH, © 2018-2022 Altair Engineering Inc.
Altair® OptiStruct® ©1996-2022

Altair® PollEx™ ©2003-2022

Altair® Pulse™ ©2020-2022

Altair® Radioss® ©1986-2022

Altair® SEAM® © 1985-2019 Cambridge Collaborative, Inc., © 2019-2022 Altair Engineering Inc.
Altair® SimLab® ©2004-2022

Altair® SimSolid® ©2015-2022

Altair® ultraFluidX® ©2010-2022 Altair Engineering GmbH, © 2018-2022 Altair Engineering Inc.
Altair® Virtual Wind Tunnel™ ©2012-2022

Altair® WinProp™ ©2000-2022

Altair® WRAP™ ©1998-2022 Altair Engineering AB

Altair® S-FRAME® © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-STEEL™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-PAD™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-CONCRETE™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-LINE™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-TIMBER™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-FOUNDATION™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.
Altair® S-CALC™ © 1995-2022 Altair Engineering Canada, Ltd., © 2021-2022 Altair Engineering Inc.

Altair Packaged Solution Offerings (PSOs)

Altair® Automated Reporting Director™ ©2008-2022
Altair® e-Motor Director™ ©2019-2022

Altair® Geomechanics Director™ ©2011-2022
Altair® Impact Simulation Director™ ©2010-2022
Altair® Model Mesher Director™ ©2010-2022
Altair® NVH Director™ ©2010-2022

Altair® Squeak and Rattle Director™ ©2012-2022
Altair® Virtual Gauge Director™ ©2012-2022

Altair® Weld Certification Director™ ©2014-2022
Altair® Multi-Disciplinary Optimization Director™ ©2012-2022

Altair HPC & Cloud Products

Altair® PBS Professional® ©1994-2022
Altair® Control™ ©2008-2022

Altair® Access™ ©2008-2022

Altair® Accelerator™ ©1995-2022
Altair® Accelerator™ Plus ©1995-2022
Altair® FlowTracer™ ©1995-2022
Altair® Allocator™ ©1995-2022
Altair® Monitor™ ©1995-2022

Altair® Hero™ ©1995-2022

Altair® Software Asset Optimization (SAO) ©2007-2022
Altair Mistral™ ©2022

Introduction

2022.1 Embed

Introduction

Altair Drive ©2021-2022

Altair® Grid Engine® ©2001, 2011-2022
Altair® DesignAl™ ©2022

Altair Breeze™ ©2022

Altair Data Analytics Products

Altair® Knowledge Studio® © 1994-2022 Altair Engineering Canada, Ltd., © 2018-2022 Altair Engineering Inc.
Altair® Knowledge Studio® for Apache Spark © 1994-2022 Altair Engineering Canada, Ltd., © 2018-2022 Altair Engineering Inc.
Altair® Knowledge Seeker™ © 1994-2022 Altair Engineering Canada, Ltd., © 2018-2022 Altair Engineering Inc.
Altair® Knowledge Hub™ © 2017-2022 Datawatch Corporation, © 2018-2022 Altair Engineering Inc.

Altair® Monarch® © 1996-2022 Datawatch Corporation, © 2018-2022 Altair Engineering Inc.

Altair® Panopticon™ © 2004-2022 Datawatch Corporation, © 2018-2022 Altair Engineering Inc.

Altair® SmartWorks™ © 2021-2022

Altair SmartCore™ © 2011-2022

Altair SmartEdge™ © 2011-2022

Altair SmartSight™ © 2011-2022

Altair One™ ©1994-2022

Third-party software licenses

AcuConsole contains material licensed from Intelligent Light (www.ilight.com) and used by permission.

AES License
The original author is Karl Malbrain.

This work, including the source code, documentation and related data, is placed into the public domain. It is distributed under the AES Software
License. See http://www.geocities.ws/malbrain/aestable c.html .

THIS SOFTWARE IS PROVIDED AS-IS WITHOUT WARRANTY OF ANY KIND, NOT EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY. THE AUTHOR
OF THIS SOFTWARE, ASSUMES _NO_ RESPONSIBILITY FOR ANY CONSEQUENCE RESULTING FROM THE USE, MODIFICATION, OR REDISTRIBUTION OF
THIS SOFTWARE.

Boost Software License

Copyright (c) 2012 Artyom Beilis (Tonkikh)

Distributed under the Boost Software License, Version 1.0. See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE 1 0.txt

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation
covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of
the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must
be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENTSHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLEFOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHERDEALINGS IN THE SOFTWARE.

CyberX3DA4CC License
Copyright (C) 2002-2003 Satoshi Konno
All rights reserved.

Distributed under the CyberX3D4CC Software License. See https://github.com/cybergarage/CyberXx3D4CC/blob/master/COPYING .

2022.1 Embed 3

http://www.geocities.ws/malbrain/aestable_c.html
http://www.boost.org/LICENSE_1_0.txt
https://github.com/cybergarage/CyberX3D4CC/blob/master/COPYING

Introduction

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The name of the author may not be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ECVT License

Copyright (c) 1993-2018 Texas Instruments Incorporated

http://www.ti.com

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FMILIB License

File: FMILIB_License.txt

License information file for the FMILIB.

Note: Content of this file is used verbatim in doxygen generated documentation.

copyright (C) 2012 Modelon AB

3-Clause BSD License:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.\n

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

- Neither the name of the Modelon AB nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL MODELON AB BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4 2022.1 Embed

http://www.ti.com/

Introduction

GRG2 License

GRG2 (Generalized Reduced Gradient 2) licensed from:
Tom Aird

30 Snowball Ct.

Reno, NV 89511

E-mail: TomAird@aol.com

Phone: 775-852-4641

The owner confirmed by email that VisSim is free to use this code for a one-time fee of $1000. In exchange for a one-time payment of $1000 (by
Sept. 15) Visual Solutions would get a paid-up unsupported license for OptimizePRO that would allow continued selling of OptimizePRO with VisSim
and not pay any further royalties.

GrldCell License

GridCell.cpp - part of powerPack.dll

MFC Grid Control - Main grid cell class

Provides the implementation for the "default" cell type of the grid control. Adds in cell editing.
Written by Chris Maunder <cmaunder@mail.com>

Copyright (c) 1998-2002. All Rights Reserved.

This code may be used in compiled form in any way you desire. This file may be redistributed unmodified by any means PROVIDING it is not sold for
profit without the authors written consent, and providing that this notice and the authors name and all copyright notices remains intact.

An email letting me know how you are using it would be nice as well.

This file is provided "as is" with no expressed or implied warranty. The author accepts no liability for any damage/loss of business that this product
may cause.

For use with CGridCtrl v2.20+

History:

Eric Woodruff - 20 Feb 2000 - Added PrintCell() plus other minor changes

Ken Bertelson - 12 Apr 2000 - Split CGridCell into CGridCell and CgridCellBase <kenbertelson@hotmail.com>

C Maunder - 17 Jun 2000 - Font handling optimsed, Added CGridDefaultCell

gstreamer License

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version
number 2.1.]

See https://github.com/GStreamer/gstreamer/blob/master/COPYING .

librdkafka - Apache Kafka C driver library
Copyright (c) 2012-2020, Magnus Edenhill
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

2022.1 Embed 5

https://github.com/GStreamer/gstreamer/blob/master/COPYING

Introduction

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

KEPWARE OPC License

KEPWARE OPC license is provided freely and can be used in your own projects. The programming example is provided “AS IS.” As such, KEPWARE , Inc
makes no claims to the worthiness of the code and does not warrantee code to be error free.

LAPACK (CLAPACK) License

CLAPACK is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. Thus, it can be included in
commercial software packages (and has been). We only ask that proper credit be given to the authors. Namely, we ask that you cite the LAPACK
Users' Guide, Third Edition.

Authors: Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S; Demmel, J; Dongarra, J.;Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen,
D.

Title: APACK} Users' Guide, Third Edition

Publisher: Society for Industrial and Applied Mathematics}, 1999

Philadelphia, PA

ISBN 0-89871-447-8 (paperback)

Like all software, it is copyrighted. It is not trademarked, but we do ask the following:

If you modify the source for these routines we ask that you change the name of the routine and comment the changes made to the original.

We will gladly answer any questions regarding the software. If a modification is done, however, it is the responsibility of the person who modified the
routine to provide support.

LWIP License

IwlIP is licensed under the BSD license:

Copyright (c) 2001-2004 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “'AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

LTOA License

LTOA.C

Converts a long integer to a string.

Copyright 1988-90 by Robert B. Stout dba MicroFirm
Released to public domain, 1991

MIT License

6 2022.1 Embed

Introduction

Copyright (c) Microsoft Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE

2022.1 Embed 7

Introduction

MKL License (Intel Simplified Software License)

Intel Simplified Software License

(version January 2017)

This license applies to the following products:

eIntel® Math Kernel Library (intel® MKL)

eIntel® Integrated Performance Primitives (Intel® IPP)
eIntel® Distribution for Python

eIntel® Machine Learning Scaling Library (Intel® MLSL)
Copyright © 2017 Intel Corporation.

Use and Redistribution. You may use and redistribute the software (the "Software"), without modification, provided the following conditions are
met:

eRedistributions must reproduce the above copyright notice and the following terms of use in the Software and in the documentation and/or other
materials provided with the distribution.

eNeither the name of Intel nor the names of its suppliers may be used to endorse or promote products derived from this Software without specific
prior written permission.

*No reverse engineering, decompilation, or disassembly of this Software is permitted.

Limited patent license. Intel grants you a world-wide, royalty-free, non-exclusive license under patents it now or hereafter owns or controls to make,
have made, use, import, offer to sell and sell ("Utilize") this Software, but solely to the extent that any such patent is necessary to Utilize the
Software alone. The patent license shall not apply to any combinations which include this software. No hardware per se is licensed hereunder.

Third party and other Intel programs. "Third Party Programs" are the files listed in the "third-party-programs.txt" text file that is included with the
Software and may include Intel programs under separate license terms. Third Party Programs, even if included with the distribution of the Materials,
are governed by separate license terms and those license terms solely govern your use of those programs.

DISCLAIMER. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT ARE DISCLAIMED. THIS SOFTWARE IS NOT
INTENDED NOR AUTHORIZED FOR USE IN SYSTEMS OR APPLICATIONS WHERE FAILURE OF THE SOFTWARE MAY CAUSE PERSONAL INJURY OR DEATH.

LIMITATION OF LIABILITY. IN NO EVENT WILL INTEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
YOU AGREE TO INDEMNIFIY AND HOLD INTEL HARMLESS AGAINST ANY CLAIMS AND EXPENSES RESULTING FROM YOUR USE OR UNAUTHORIZED USE
OF THE SOFTWARE.

No support. Intel may make changes to the Software, at any time without notice, and is not obligated to support, update or provide training for the
Software.

Termination. Intel may terminate your right to use the Software in the event of your breach of this Agreement and you fail to cure the breach within
a reasonable period of time.

Feedback. Should you provide Intel with comments, modifications, corrections, enhancements or other input ("Feedback") related to the Software
Intel will be free to use, disclose, reproduce, license or otherwise distribute or exploit the Feedback in its sole discretion without any obligations or
restrictions of any kind, including without limitation, intellectual property rights or licensing obligations.

Compliance with laws. You agree to comply with all relevant laws and regulations governing your use, transfer, import or export (or prohibition
thereof) of the Software.

Governing law. All disputes will be governed by the laws of the United States of America and the State of Delaware without reference to conflict of
law principles and subject to the exclusive jurisdiction of the state or federal courts sitting in the State of Delaware, and each party agrees that it
submits to the personal jurisdiction and venue of those courts and waives any objections. The United Nations Convention on Contracts for the
International Sale of Goods (1980) is specifically excluded and will not apply to the Software.

8 2022.1 Embed

Introduction

*QOther names and brands may be claimed as the property of others.

Mosquitto License

This project is dual licensed under the Eclipse Public License 2.0 and Eclipse Distribution License 1.0 as described in the epl-v20 and edI-v10 files.
nowide License

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation
covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of
the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must
be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Open Source Computer Vision Library License

Open Source Computer Vision Library (OpenCV) 3.3.1

(3-clause BSD License)

Copyright (C) 2000-2016, Intel Corporation, all rights reserved.

Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.

Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.

Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.

Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.

Copyright (C) 2015-2016, Itseez Inc., all rights reserved.

Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the names of the copyright holders nor the names of the contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall copyright holders or contributors be liable
for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

OpenModelica Binary FMU License

Copyright (c) 2021 Modelica Association Project "FMI". All rights reserved.

The Reference FMUs are released under the 2-Clause BSD license:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2022.1 Embed 9

Introduction

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Reference FMUs are a fork of the Test FMUs (https://github.com/CATIA-Systems/Test-FMUs) by Dassault Systemes, which are a fork of the FMU
SDK (https://github.com/qtronic/fmusdk) by QTronic, both released under the 2-Clause BSD License.

The FMI header files are copyright (c) 2008-2011 MODELISAR consortium, 2012-2021. The Modelica Association Project "FMI" and released under
the 2-Clause BSD License.

OpenXLSX License

Copyright (c) 2020, Kenneth Troldal Balslev

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Pigpio License

This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and

successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under
copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to http://unlicense.org/.

10 2022.1 Embed

https://github.com/CATIA-Systems/Test-FMUs
https://github.com/qtronic/fmusdk
http://unlicense.org/

Introduction

PowrPack License

Author: Samir Khan, 475 Drummerhill Crescent Waterloo, Ontario N2T 1G3 Canada
To Whom it May Concern

| started developing the VisSim PowerPack in July 2006. The PowerPack is an addon for VisSim and is a collection of blocks for
e solution of linear and polynomial equations via LAPACK routines

e smoothing signals via various methods

e curve fitting

e entering and displaying matrix data in a tabular GUI grid.

| donated the software to Visual Solutions for use with VIsSIm and claim no rights.
Pugixml License

pugixml parser - version 1.10

* Copyright (C) 2006-2019, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://pugixml.org/

This library is distributed under the MIT License. See notice at the end of this file.
This work is based on the pugxml parser, which is:

Copyright (C) 2003, by Kristen Wegner (kristen@tima.net)

Copyright (c) 2006-2019 Arseny Kapoulkine

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, HETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR THER DEALINGS IN THE SOFTWARE.

STM32CUBEFO0/F1/F2/F3/F4/GO0 License

BY INSTALLING COPYING, DOWNLOADING, ACCESSING OR OTHERWISE USING THIS SOFTWARE PACKAGE OR ANY PART THEREOF (AND THE RELATED
DOCUMENTATION) FROM STMICROELECTRONICS INTERNATIONAL N.V, SWISS BRANCH AND/OR ITS AFFILIATED COMPANIES
(STMICROELECTRONICS), THE RECIPIENT, ON BEHALF OF HIMSELF OR HERSELF, OR ON BEHALF OF ANY ENTITY BY WHICH SUCH RECIPIENT IS
EMPLOYED AND/OR ENGAGED AGREES TO BE BOUND BY THIS SOFTWARE PACKAGE LICENSE AGREEMENT.

Under STMicroelectronics’ intellectual property rights and subject to applicable licensing terms for any third-party software incorporated in this
software package and applicable Open Source Terms (as defined here below), the redistribution, reproduction and use in source and binary forms of
the software package or any part thereof, with or without modification, are permitted provided that the following conditions are met:

1.Redistribution of source code (modified or not) must retain any copyright notice, this list of conditions and the following disclaimer.

2.Redistributions in binary form, except as embedded into microcontroller or microprocessor device manufactured by or for STMicroelectronics or a
software update for such device, must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3.Neither the name of STMicroelectronics nor the names of other contributors to this software package may be used to endorse or promote
products derived from this software package or part thereof without specific written permission.

4.This software package or any part thereof, including modifications and/or derivative works of this software package, must be used and execute
solely and exclusively on or in combination with a microcontroller or a microprocessor devices manufactured by or for STMicroelectronics.

2022.1 Embed 11

Introduction

5.No use, reproduction or redistribution of this software package partially or totally may be done in any manner that would subject this software
package to any Open Source Terms (as defined below).

6.Some portion of the software package may contain software subject to Open Source Terms (as defined below) applicable for each such portion
(“Open Source Software”), as further specified in the software package. Such Open Source Software is supplied under the applicable Open Source
Terms and is not subject to the terms and conditions of license hereunder. “Open Source Terms” shall mean any open source license which requires
as part of distribution of software that the source code of such software is distributed therewith or otherwise made available, or open source license
that substantially complies with the Open Source definition specified at www.opensource.org and any other comparable open source license such as
for example GNU General Public License (GPL), Eclipse Public License (EPL), Apache Software License, BSD license and MIT license.

7.This software package may also include third party software as expressly specified in the software package subject to specific license terms from
such third parties. Such third party software is supplied under such specific license terms and is not subject to the terms and conditions of license
hereunder. By installing copying, downloading, accessing or otherwise using this software package, the recipient agrees to be bound by such license
terms with regard to such third party software.

8.STMicroelectronics has no obligation to provide any maintenance, support or updates for the software package.

9.The software package is and will remain the exclusive property of STMicroelectronics and its licensors. The recipient will not take any action that
jeopardizes STMicroelectronics and its licensors' proprietary rights or acquire any rights in the software package, except the limited rights specified
hereunder.

10.The recipient shall comply with all applicable laws and regulations affecting the use of the software package or any part thereof including any
applicable export control law or regulation.

11.Redistribution and use of this software package partially or any part thereof other than as permitted under this license is void and will
automatically terminate your rights under this license.

THIS SOFTWARE PACKAGE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO
EVENT SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE PACKAGE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

EXCEPT AS EXPRESSLY PERMITTED HEREUNDER AND SUBJECT TO THE APPLICABLE LICENSING TERMS FOR ANY THIRD-PARTY SOFTWARE
INCORPORATED IN THE SOFTWARE PACKAGE AND OPEN SOURCE TERMS AS APPLICABLE, NO LICENSE OR OTHER RIGHTS, WHETHER EXPRESS OR
IMPLIED, ARE GRANTED UNDER ANY PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF STMICROELECTRONICS OR ANY THIRD PARTY.

SUNDIALS License

Copyright (c) 2002, The Regents of the University of California.
Produced at the Lawrence Livermore National Laboratory.
Written by S.D. Cohen, A.C. Hindmarsh, R. Serban,

D. Shumaker, and A.G. Taylor.

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-155953 (KINSOL)

All rights reserved.

This file is part of SUNDIALS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer below.

12 2022.1 Embed

Introduction

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the UC/LLNL nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Department of Energy (DOE). This work was produced at the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 with the DOE.

2. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name, trademark, manufacturer or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

TI C2000 Compiler/TI ARM/TI MSP430 License

C2000 Code Generation Tools Licenses

--BSD-3-Clause--

Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--BSL-1.0--
Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation
covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of
the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

2022.1 Embed 13

Introduction

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must
be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--Powell--
Copyright Patrick Powell 1995

This code is based on code written by Patrick Powell (papowell@astart.com) .It may be used for any purpose as long as this notice remains intact on

all source code distributions.

--Thai Open Source Software Center Ltd--

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NO NINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--TI TSPA--

Copyright (c) 1990-2014 Texas Instruments Incorporated
All rights reserved not granted herein.

Limited License.

Texas Instruments Incorporated grants a world-wide, royalty-free, non-exclusive license under copyrights and patents it now or hereafter owns or
controls to make, have made, use, import, offer to sell and sell ("Utilize") this software subject to the terms herein. With respect to the foregoing
patent license, such license is granted solely to the extent that any such patent is necessary to Utilize the software alone. The patent license shall not
apply to any combinations which include this software, other than combinations with devices manufactured by or for Tl (“TI Devices”). No hardware
patent is licensed hereunder.

Redistributions must preserve existing copyright notices and reproduce this license (including the above copyright notice and the disclaimer and (if
applicable) source code license limitations below) in the documentation and/or other materials provided with the distribution

Redistribution and use in binary form, without modification, are permitted provided that the following conditions are met:

* No reverse engineering, decompilation, or disassembly of this software is permitted with respect to any software provided in binary form.
* Any redistribution and use are licensed by TI for use only with TI Devices.

* Nothing shall obligate Tl to provide you with source code for the software licensed and provided to you in object code.

If software source code is provided to you, modification and redistribution of the source code are permitted provided that the following conditions
are met:

* any redistribution and use of the source code, including any resulting derivative works, are licensed by Tl for use only with Tl Devices.

* any redistribution and use of any object code compiled from the source code and any resulting derivative works, are licensed by Tl for use only with
Tl Devices.

14 2022.1 Embed

mailto:papowell@astart.com

Introduction

Neither the name of Texas Instruments Incorporated nor the names of its suppliers may be used to endorse or promote products derived from this
software without specific prior written permission.

DISCLAIMER.

THIS SOFTWARE IS PROVIDED BY TI AND TI’S LICENSORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TI AND TI'S
LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C2000 RTS Library Licenses

Information on the copyrights and licenses for each RTS file are provided in C2000_RTS_18 1_0_LTS.html.
VsWhere License

Uses the MIT License, as described above.

Software Security Measures:

Altair Engineering Inc. and its subsidiaries and affiliates reserve the right to embed software security mechanisms in the Software for the purpose of
detecting the installation and/or use of illegal copies of the Software. The Software may collect and transmit non-proprietary data about those illegal
copies. Data collected will not include any customer data created by or used in connection with the Software and will not be provided to any third
party, except as may be required by law or legal process or to enforce our rights with respect to the use of any illegal copies of the Software. By
using the Software, each user consents to such detection and collection of data, as well as its transmission and use if an illegal copy of the Software is
detected. No steps may be taken to avoid or detect the purpose of any such security mechanisms.

WIFIEsp Version 2.2.2 License

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other
work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain
responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you
distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must
make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors'
sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so.
This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in
the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to
prohibit the practice for those

2022.1 Embed 15

Introduction

products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid
the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification are here: https://github.com/bportaluri/WiFiEsp/blob/master/LICENSE.
Use of Master and Slave in hardware-specific block descriptions

Embed supports hardware devices that use the words master and slave to describe relationships in bus modes, communication

protocols, and connections. We recognize that these words are inappropriate and offensive. We are evaluating how to change these

words without introducing technical confusion.

What you get with Embed

Embed is an extension of Embed SE (Simulation-Only Edition). It includes all the features and capabilities of Embed SE,
along with the following embedded development features:

e Enhanced automatic C code generators to produce code that will run on the following devices:

Arduino Leonardo, Mega 2560, Nano, and Uno

AMD64

Raspberry Pi Zero, Zero W, 1A+, 1B+, 2B, 3A+, 3B, 3B+, and 4B

STMicroelectronics STM32 FOx, F103x, F3x, F4x, F7x, GOx, G4x, H7x, L4x, and WBXx series

Texas Instruments ARM Cortex® M3, C2000™, Delfino™, MSP430™, and Piccolo™

Peripheral block libraries for:

Arduino Leonardo, Mega 2560, and Uno

AMDG64

Raspberry Pi Zero, Zero W, 1A+, 1B+, 2B, 3A+, 3B, 3B+, and 4B
STMicroelectronics STM32 FOx, F103x, F3x, F4x, F7x, GOx, G4x, H7x, and L4x

Texas Instruments ARM Cortex M3, C2000, Delfino, MSP430, and Piccolo

e Texas Instruments digital motor control (DMC) block libraries

e Fixed-Point block library

e Blocks for communicating with the target and performing analog and digital /O operations with the analog and
digital ports on the target device

New features

The most significant addition to the 2022.1 release is the availability of Embed, Embed SE, and Embed Basic as 64-bit

applications.

Additionally, the new eDrives add-on module, available as a separate purchase and install, provides a highly efficient
environment covering all phases of developing control systems for electric drives.

The table below summarizes the new features in 2022.1. Note that the Code Generation features are included in Embed
and Embed Basic, but not Embed SE.

16

2022.1 Embed

https://github.com/bportaluri/WiFiEsp/blob/master/LICENSE

Introduction

Blocks New Feature Version

Flip Reverses the elements in a matrix or vector horizontally 2022.1
and vertically

Import Recognizes the semi-colon character as a delimiter 2022.1
imported data files

OpenVision: Draw Lines, Draw Includes line type specification 2022.1

Rectangles, Draw Circles

PSIMCoupler Links an Altair PSIM schematic to an Embed diagram for | 2022.1
co-simulation

State Chart Synchronizes default state chart execution with time 2022.1
steps in Embed diagram

GUI New Feature Version

File > Save Saves diagrams as VSMX files and uses ZIP 2022.1
compression to save the associated files with the
diagrams

File > Send Sends diagrams and automatically attaches all 2022.1
associated files

Optimization method Includes Generalized Reduced Gradient optimization 2022.1
method

Code Generation New Feature Version

Arduino target support Expands target support to include Nano boards 2022.1

Raspberry Pi OS support Expands OS support to include Bullseye 2022.1

STMicroelectronics target support Expands target support to include STM32 WBXx boards 2022.1

STMicroelectronics peripheral support Expands STMicroelectronics peripheral support to 2022.1
include Hall Sensor and Set PWM Mode blocks

Texas Instruments target support Expands target support to include F280025 and F2838x | 2022.1
microcontrollers

Texas Instruments peripheral support . Provides internal and external voltage reference 2022.1

e F2838x supports XBAR, CMPC, and CMPD

Resources for learning Embed

The following free resources are available to help you become an expert Embed user.

Online and local help

Embed offers both online and local Help. By default, Embed is installed with online Help; local Help is an optional,
separate installation that you can download from https://altairone.com. You can switch between online and local Help with
the Help > Set Help Source command. Embed uses your current Browser when diaplaying Help.

There are three versions of Embed software — Embed, Embed SE, and Embed Basic — described under Embed product
family_D2HLink 12015. Help is available for all three versions, and for simplicity, Help always refers to the product as
Embed, regardless of the version you are using. Sections that do not apply to a specific version are properly noted.

2022.1 Embed

17

https://altairone.com/

Introduction

Videos

The Embed vidoes repository contains a growing collection of videos that offer quick and easy ways to learn basic
concepts in Embed. Each video focuses on a specific Embed feature. If you are a new Embed user, a good video to start
with is Introduction to Altair Embed.

Sample diagrams

Your Embed software includes dozens of fully documented sample diagrams that illustrate both simple and complex
embedded systems.

To access sample embedded diagrams
e Click on Examples > Embedded.

If you know the chip you're targeting, you can see target-specific examples in the corresponding subcategories.

Technical support

The Altair technical support teams are expert Embed users and can provide assistance and advice for most problems you
may encounter. Typically, technical support provides help solving specific problems, rather than providing training on how
to use Embed.

Support How to access

Click here to go to the Altair Community webpage. Then click Forums & User
Groups and select the Embed product. The Embed online forum is a
convenient platform for asking questions and searching for answers.

Online forum

Email Send an email to embed-support@altair.com and include the following:

e Briefly describe your issue
e Attach the diagram in question

. Specify the version of the software

Phone Click here to contact your local support office.

The Altair Embed product family

Professional and Basic editions

Feature Embed Basic Edition Embed Professional Editions
Embed Embed Simulation-Only (SE)
Restricts block diagram size to v
100 blocks
Drag-and-drop block diagram v v v
construction
Continuous, discrete, and hybrid v v v
simulations

18 2022.1 Embed

https://www.youtube.com/channel/UCLQz28mcYVKkgw9aHPkazmA/videos
https://www.youtube.com/watch?v=TPoQIbqYtbA
https://forum.altair.com/forum/69-altair-embed/
mailto:embed-support@altair.com
https://altairhyperworks.com/ClientCenterHWSupportProduct.aspx

Introduction

Conditional execution of

Raspberry Pi Zero, Zero W, 1A+,
1B+, 2B, 3A+, 3B, 3B+, 4B target
support

v v
subsystems
Interactive, batch, auto-restart, v v
and single-step execution modes
Fixed, adaptive, and stiff v v
integration algorithms
Standard block set with 120+
mathematical, scientific, and v v
engineering blocks
OpenVision block set v v
State Charts block set v v
Fixed Point block set v v
Digital Motor Control block set v v
Toolbox libraries for controls,
dynamic systems, electric,
electromechanical, eMotor, fixed % v
point, hydraulics, logic, process,
quaternion operations, and signal
generation
Analysis and linearization with
Bode, root locus, and frequency v v
domain plots
Corjst‘ralr?ed parameter v v
optimization
Visualization with interactive plots
and stripCharts, 3D animation, 3D v v
plots, and polar plots
Data I/O using National
Instruments and Measurement v v
Computing boards
Data I/O with an OPC server v
Data I/O with an RS 232 device v v
Data I/O with UDP v v
Data I/O with a PCAN USB
Controller Area Network (CAN) v v
device
Code generation v v
AMD64 target support v v
Arduino Leonardo, Mega 2560, v v
Nano, Uno target support
AMDS64 target support v v
v v

2022.1 Embed

19

Introduction

STMicroelectronics STM32 FOx, 4 v
F103x, F3x, F4x, F7x, GOx, G4x,

H7x, L4x, WBXx target support

Texas Instruments ARM Cortex 4 v
M3, C2000, Delfino, MSP430,

Piccolo target support

Generic MCU target support 4 v
HotLink 4 v

Special-purpose add-on modules

Add-On Module

Description

Embed/Core Source Code Library

Provides source code for core blocks not translated into inline code. Target is the PC.
Available only for Embed. Not available for academic (EDU) licenses.

Embed/Target Source Code Library

Provides source code for target-specific blocks not translated into inline code. You
choose the target: AMD64; Arduino Leonardo, Mega, Nano, Uno; Raspberry Pi Zero,
Zero W, 1A+, 1B+, 2B, 3A+, 3B, 3B+, 4B; STMicroelectronics STM32 FOx, F103x,F3X,
Fax, F7x, GOx, G4x, H7x, L4x, WBX; Texas Instruments ARM Cortex M3, C2000,
Delfino, MSP430, Piccolo. Available only for Embed. Not available for academic (EDU)
licenses.

Embed/Comm

Simulates end-to-end communication systems at the signal level using 200+
communications, signal processing, and RF blocks. Available for Embed and Embed
SE. The blocks are for simulation only.

Embed/Digital Power Designer

Provides high-level blocks for simulation and code generation of power supply and
digital power components and controls. Available only for Embed.

Embed/eDrives

Provides a highly efficient environment covering all phases of developing control
systems for electric drives.

Embed Viewer

The Altair Embed® Viewer is a free, run-time version of Embed for sharing Embed diagrams with colleagues and clients

not licensed to use Embed.

The Viewer lets recipients open and simulate Embed diagrams of any size; change block and simulation parameters to
test various design scenarios; customize plots and other display blocks to present simulation results in different formats;
and make printed copies of diagrams for presentation or archiving.

You can also provide recipients with OUT and ELF files allowing them to simulate your HIL models.

The Viewer preserves model integrity by prohibiting recipients from changing wiring and block diagram structure.
Moreover, you can lock sensitive information in password-protected compound and embed blocks, allowing you to share
confidential designs without the fear of a security breach.

20

2022.1 Embed

Quick Start

Your Embed software includes dozens of fully documented sample diagrams that illustrate both simple and complex
models spanning a broad range of engineering disciplines.

To access the diagrams, click on Examples > Embedded. The two main subcategories are Digital Motor Control and
Digital Power Systems. If you know the chip you're targeting, you can see target-specific examples in the target
subcategory.

Accessing the Chip Temp sample diagram

This section gets you started using Embed by stepping you through the Chip Temp on F28069 diagram. This diagram
measures the temperature in centigrade of a Texas Instruments Piccolo F28069 device. The ADC channel 5 is redirected
from an external pin to the on-chip temperature sensor. The compound block Turn On Ch 5 Temp Conversion performs
the redirection.

To access the chip temperature model
1. Click Examples > Embedded > Piccolo > ADC.
2. Select Chip Temp on F28069.

The following diagram appears:

F28x Config: F2806SM@80MHz
TIXDS100v2 USB

F % ™
Right-click above block to select Gl 5] Plot e ﬁ\ = |
MCU target or seek help 0
100}
LED2 af ADCS = |
2% Chip Temperature on F28069,rmp(deoC) ; -200
Right-click above block to drill down e Bl
-400 1 1 1
P 0 25 5 75 10
E Time (sec)
Compound blocks provide

organizational hierarchy to the
design

2022.1 Embed 21

3. Right-click Chip Temperature on F28069 to move down one level of hierarchy.

$firstPass Turn on ch 5

GPIO configured for F28069/28035/28027 controlCARD Temp Conversion

p LED2 »[F28068-GPIO31

b
»{ F28068-GPI034 737.28@x12.16
b 1874096@12.16

DegC for full ADC val
> ADC_temp_slope

r>[1 state 1Hz Low Pass Butterworth |—>[AIN5 10.32

Right click to set ADC channel,
choose analog or digital, or
seek help.

Convert ADC value to degrees Centigrade

[F28068-ADCRESULT5 0393@Md 32
> ADC_temp_offset

ADC at ODegC (obtained experimentally)
1750/4095@fx4.32

B 1740/4096 from data sheet

Quick Start

[AING ADCS

Temp(degC)
— >

The above diagram reads ADC channel 5 and applies an offset and gain to convert the reading to degrees
centigrade. It also executes the code contained in Turn on Ch 5 Temp Conversion, which switches ADC 5 from an
external pin to the internal temperature sensor. Note that Turn on Ch 5 Temp Conversion is triggered by the built-in

variable $firstPass. This means that the block and its contents are executed once at boot time.

4. Right-click Turn on Ch 5 Temp Conversion to move down one level of hierarchy.

Set TEMPCONYV "Use internal temperature sensor on channel 5" bit

ADCCTLA1 | or > ADCCTL1
0x1 o

b

Use PWM to generate SOC (Start of Conversion) pulse for ADC

0.5@fx1.16 %Duty Cycle A(1.16)
[0.5@fx1.16 | E %Duty Cycle B(1.16) F28068-EPWM1A/EPWM1B

Tl doc says to use these addresses to get offset and slope

[F(int)0x3D7ES2L Bl shift
0x0 |——ishift dist Right (18— ADC_temp_offset |-

[getTempOffset2803x()

(int)0x3D7E85L —— P> Shift
Sl [0x0 I—E;s(hift dist Riglht(1'16)—l>| ADC_temp_slope |-

The above diagram enables the internal temperature sensor on ADC A5. The Extern Read (*(int*)0x3D7E82L) and
Extern Write (*(int*)0x3D7E85L) blocks write directly to the hardware registers. To enforce the order of execution,
Embed executes parallel flows in top-down order. The ePWM block sends Start of Conversion pulses to the ADC A5.

22

2022.1 Embed

Quick Start

This code also enables the ePWM block to send Start of Conversion pulses to the ACD A5.

Use PWM to generate SOC (Start of Conversion) pulse for ADC

0.5@fx1.16 %Duty Cycle A(1.16)
\—@;h_[i% e oy o) F28068-EPWM1A/EPWM1B

, ,
oo

PWM Unit: [7] Use High Res Timer

Time Base #
Rate Scaiing: o Mo ays to use these addres; to get offset and slope
Timer Period: 8000 | BkHz [] Change Period Dynamically x Shift

[T TBCTR=TBPHS on SYNCI pulse TBPHS (phase) 0
Change Phase Dmamn:alb, PG

i Right (4.16)—>{ ADC_temp_offset |—

: uploc
EPWMSYNCO: EFWMSYNCI - EPWMSYNCOmn Unused
CMPALoadOn: [CTR=Zem v| CMPBloadOn: [CTR=Zem +|

X Shift
o Right(1.16)—{>l ADC_temp_slope |—

Action Qualfier:

CMPA CMPB
up down up down P

S i e
I o o e e

GPIO Pin

Deadband: 4
Delay Mode: [Disabled

Polarity: No Inversion

Input Select: DbAin = PWMA, DbB in = PWMA

Rising Edge Delay (0-1023): |0 Falling J#fige Delay (0-1023):

Send Start ADC Conversion Pulse A (SOCA):
Send Start ADC Conversion Pulse B (SOCB): ICTR =PRD

o e

Fault Handling

Digital Compare...
[7] Add Enable Pin (0 value forces Fault)
One Shot TZx Fault Source: [7]1 [T]2 [F]3 [F]14 [7]5 [C]6 [T]DCA [T]DCB
CBC TZx Fault Source: 11 2 [13 [F14 F15 [Fe Floca [Foce

TZ1: [GPIO12 v| TZ2: [GPIO13 v TZ3: [GPIO14]

774] 125 | v Tz -

Compiling the source diagram

Before you can compile the source diagram, move back up to the top level of the diagram.

To compile the source diagram

1. Atthe top level of the diagram, select the compound block Chip Temperature on F28069.

The compound block turns red.

2022.1 Embed 23

Quick Start

2. Click Tools > Code Gen.
The C Code Generation dialog box appears.
Code Generation Properties
Result File: temp on F28069.C
Result Dir: C:\Altair \Embed2020%:g
Target: F2a0x o
Subtarget (setin target config): F28069M
Optimization Level: [chedk for Performance Issues
IUse selected compound edge pins for data exchange (enables embedded debug)
Embed Maps in Code [] add Stack Check Code
] call from Foreign RTOS User App On-Chip BAM Only
[] indude Blodk Nesting as Comment [] Target FLASH
[]Enable Preemption in Main Ciagram
Stack size: Heap size:
Perindic Function Mame: cgMain
Code Gen View... Compile... Download. ..
3. Activate Use selected compound edge pins for data exchange. This lets you debug the target executable.
4. Click Compile to generate C code and compile it with Code Composer.
The following DOS window appears.
EX CAWINDOWS\system32\cmd.exe — O X
ALIBS=-1 1ib\SFO TI Buil
GTREGDEF=
(if not "oM" /1_fpu32.1ib -1 1ib
RALIBS=-1 1i
TGTREGDEF=11
The above window displays the output of the Code Composer compiling and linking the diagram.
24 2022.1 Embed

Quick Start

5. You can check to make sure the compile (cl2000) and link (link2000) are error free, and then press any key to
continue

6. Click Browse in the C Code Generation dialog box to examine the generated C-code.

| chip_temp_on_F28069.c - Notepad = O *

File Edit Format View Help

JEEE Atair Embed 2828.3 Build 13 Automatic C Code A
Generator =%=/

/% Output for chip temp on F28869.vsm at Tue Now 17
15:86:26 2828 =/

/¥ Target: F288X[F28869M] */

#include "math.h"
#include "cgen.h"
#include "cgendll.h"™
#include "c2008.hH"
#include "DMC32.h"
int MHZI=88,

#define SYS MHI_ 8@
int junk;

static int32_t AINS;

static int32 t xf stated5[1]={ 8};
static int32 t xf Xdot 45;
XFERFUN_INFO _FX xferFunInfoFx6[]={
11, 1, (int*) xf stateds, @}

¥

S Turn on ch 5

Temp Conversion */
static void 5ub5y5tem23(vnidﬂ
{

intle t t41;

td4l1 = 16384 /= B8.5gfx1l.16 *=/;

EALLOW,
ADCCTLL = (((uintle_t)((unsigned short) ADCCTL1))|
((uintle t)lu)); W

Downloading and debugging

After compiling the source diagram, you can download and debug it using the companion debug diagram Chip Temp on
F28069-d.

To download and debug

2022.1 Embed 25

Quick Start

1. Click Examples > Embedded > Piccolo > ADC.
2. Select Chip Temp on F28069 —d.
The following diagram appears.
Measure Chip Temperature - companion debug diagram
When you click “Go”, the targetinterface block below will download your generated program (chip_temp_on_F28069.out)
to the target and then communicate via the JTAG HotLink to send values to your embedded algorithm and receive them back, allowing
you to make interactive changes changes in your target algorithms and interactively plot results in Embed.
i R ADC chS (full scale = 1) [=[@][=]
B o275}
LED2 ADCS #0150
ob peliens chip_temp_on_F28069.out %CP;(::Z;, E 0025
40100 1 1 1 1
— > 0 2 4 6 8 10
> Time (sec)
F28x Config: F28069@100MHz | ==
T XDS100\g/2 USB @ | ; ?'OTemperature (degC) o B =]
Right-click above block to select JTAG B
(use TIXDS100 for TI controlCARD) 50
change target or seek help g
1 301
.{>.
10 1 1 1 1
+ o 2 4 6 8 10
» Time (sec)
[convert |« > 1| Temperature (degF) [a&][=]
E2] woh
celsius => fahrenheit 120
> 110
- 100
90
4> 80
4 10
This debug diagram was created by replacing the > 60 L L L L
“chip temp on F28069" compound block with a 0 2 4] 6 8 10
et interface block. Click here for more details > Time (sec)
26 2022.1 Embed

3. Right-click F28x Config.

The F28x Properties dialog box appears.

F28x Properties

CPU: F28065M ~
[J Enable Interactive Peripheral Mode

CPU Speed [MHz]: a0
tultiple of Crystal Freq: Bu ~

HSPCLE.

JTAG connection:
TI ¥D5100w2 USE

Control Clk Sre: E bit tirner 2 v

Control Clk Prezcale: 1 ~

[Use Custom Linker Crad File:

DLLASD Yersion:
Altair Embed suppoart for F280 +170 Build 2376

Cancel

Clock. Source:

LSPCLE: | SYSCLE/M

EP/M Interrupt Event:
Chil Cll Count Mode:

L

Internal Oscillator 1~

20 MHz

CTR =0

Diown

Help

4. Make sure that the proper JTAG linkage is selected. This example uses XDS100.

Quick Start

2022.1 Embed

27

Quick Start

Setting diagram parameters

You set the main run rate of the diagram for both simulation and generated code for the target in the System Properties
dialog box. For simulation purposes, you can also set the integration algorithm and duration of the simulation.

To set parameters
1. Choose System > System Properties.

The System Properties dialog box appears.
System Properties >

Range Integration Method Implicit Solver Preferences Defaults

Start (sec): |E' |

Frequency: |D.I}I}5 | Kilohertz e
End isec): |-||} |

Bun in Real Time RT Scale Factor:
[Mifute Restart Retain State

Cancel Apply Help

2. The above dialog box is for the Chip Temp on F28069-d debug diagram. Notice the options used in the debug
diagram:

e End provides a 10 sec interval on plots.

e Time Step: 0.005 provides a 200 Hz update rate to data and plots.

e Run in Real Time executes the diagram in real time, so that Embed runs in sync with the target.
e Auto Restart runs continuously until you stop it.

e Retain State refrains from initializing blocks on restart and prevents reloading of the OUT file.

Running the diagram and viewing results

When you simulate the diagram, Embed downloads and runs the OUT file you created when you compiled the source
diagram. After it starts running on the target, Embed provides the following:

e Interactive inputs: The 1Hz square wave to the GPIOs blinks the on-board LEDs on the Texas Instruments
controlSTICK or controlCARD

e Interactive plots of on-chip outputs: The raw ADC A5 reading and adjusted temperature in centigrade

To run the diagram

28 2022.1 Embed

Quick Start

e Choose System > Go, or click ™ in the toolbar.

The diagram runs until you click Stop in the toolbar.

2022.1 Embed 29

Model-Based Development with
Embed

Model-based development is a process used to design and test embedded systems continuously to reduce defects and
development time and improve collaboration between engineers. Embed provides a complete environment for model-
based development of embedded systems.

There are typically three phases in the model-based development process:

Software-in-the-Loop (SIL): The plant and controller are modeled
e and simulated on the host computer

e Processor-in-the-Loop (PIL): The controller algorithm is automatically compiled, linked, and downloaded to the
target device for execution and testing

e Hardware-in-the-Loop (HIL): Plant hardware, sensors, and actuators act as the interface between the plant
simulation and the code running on the target

You can generate code at any point in the process to continuously test the validity of your algorithms.

Software-in-the-Loop simulation

During SIL simulation, the plant and controller diagrams are executed entirely on the host computer. It is also common to
include the sensor and actuator models as part of the plant diagram, at least initially. Sometimes they are neglected
entirely implying they are ideal unity gain models with no dynamics. The controller is separately modelled and interfaced
with the plant through the actuator and sensor interface signals. Initial design iterations often use a continuous-time model
for the controller, which allows standard frequency domain methods to be employed for the design.

Once the design requirements are satisfied and adequate stability margins are achieved, the controller algorithm is
converted to discrete time for further investigation of update time, multi-rate sampling, fixed-point implementations, time
jitter, quantization, and time delays. The level of confidence in meeting the design requirements during the SIL phase
depends significantly on the accuracy of the plant model. All design changes are made by modifying or augmenting
diagrams. The automatically-generated code from a diagram is never directly altered.

Diagrams developed during the SIL phase are reused and possibly supplemented with additional models as development
moves into the PIL and HIL phases.

2022.1 Embed 31

Model-Based Development with Embed

Embedded diagrams

With embedded diagrams, you can include version-controlled building block diagrams (root diagrams) within complex
models under development (destination diagrams). When embedded in a destination diagram, a read-only version of the
root diagram with full navigation capability is inserted into the destination diagram (along with a link to the root diagram).
Whenever the root diagram is updated, the changes are propagated to all destination diagrams. As defects and
requirement misses are discovered during the PIL_D2HLink 12018 and HIL phases, reworks are made to existing root
diagrams and new root diagrams may also be created. This automated rework-capture-mechanism maintains the
alignment of all SIL, PIL, and HIL diagrams keeping them all up-to-date and accurate.

$isCodeGen flag

The $isCodeGen flag is a built-in variable that detects whether you are generating code from a diagram or if you are
simply using the diagram in a simulation. In the SIL and PIL phases, the controller (either host- or target-based) receives
sensor inputs from the plant diagram residing on the host. When the diagram is migrated to the HIL phase, sensor inputs
may be received from the actual sensors. In this situation the $isCodeGen flag can be used to select when to use actual
sensor inputs as opposed to inputs from the plant diagram residing on the host, which in turn, would allow one controller
diagram to be used for SIL, PIL, and HIL.

Processor-in-the-Loop simulation

During PIL simulation for C2000, ARM Cortex M3, STM32, and Arduino targets, the controller algorithm is converted to
code and executed on a target device while the plant diagram remains in the source diagram on the host. Real-time
communication between the target and host is performed via a HotLink (JTAG, serial, or Ethernet) interface. The Embed
GUI is retained while you change controller gains and plot responses from the target.

In most situations, the controller is designed within a compound block with input and output signals flowing through its
pins. For C2000, ARM Cortex M3, STM32, and Arduino devices, a small footprint, low jitter, real-time operating system
(RTOS) is automatically generated and included in the executable code. After the executable code with RTOS has been
created, it is automatically loaded onto the target. Once loaded, the code can run in either stand-alone mode or under
host control.

Interfacing with code running on Arduino, ARM Cortex M3, Linux Raspberry
Pi, C2000, and STM32 devices

In the source diagram on the host computer, you insert and configure a Target Interface block for communicating with the
generated code running on the target. A Target Interface block is a mirror image of the compound block containing the
simulated controller. It has the same number and type of input and output pins; however, it only includes:

e The executable code file name (OUT or ELF file)
e Settings for timing options
e CPU Utilization

Signals applied to the Target Interface input pins travel from the diagram to the executable code running on the target via
the HotLink (JTAG, serial, Ethernet).

The executable code responds to these inputs and produces outputs that travel from the target to the diagram through the
Target Interface block output pins.

A source diagram using the Target Interface block is shown below.

32 2022.1 Embed

Model-Based Development with Embed

0.26 PWM Generator _
| B Plot = (==

1BlinkLEDsWithPWM.out|—m{ 2

JOLOT 00 A
LOVCLOLO T T

0 1 2 3 4 5 G 7 10
Time (sec)

Duty Cycle Fraction

¥ vV VYV ¥ ¥

Here, the simulated controller (the compound block named PWM Generator) and the Target Interface block
(BlinkLEDsWithPWM.out) are fed into a plot block. A slider provides the duty cycle fraction input signal to the simulated
controller and the Target Interface block. When you simulate the diagram, both the simulated controller and the
executable code on the target begin executing. After processing the input signal, both the simulated controller and the
executable code produce output signals that are made available to the source diagram through the output pins on the
compound block and the Target Interface block. These outputs are sent to the plot block allowing one to compare the two
responses.

You can use $isCodeGen to detect whether you are generating code from a diagram or if you are simply simulating the
diagram. Using this feature allows the same diagram to be used for SIL, PIL, and HIL.

Source and debug diagrams for Arduino, ARM Cortex M3, Linux Raspberry
Pi, C2000, and STM32 targets

As models become more complex, the processing and display of model outputs becomes a significant consumer of
screen space, often requiring several levels of hierarchy to process and display time history and other information. Due to
this, it is convenient to create a special debug diagram from your source diagram:

The purpose of the source diagram is twofold:

e To simulate the software that will be executed on the target

e Once the simulation is acceptable, to create the executable code that will be downloaded to the target
The purpose of the debug diagram is threefold:

e To download and run the executable code

e To dynamically adjust parameters in the executable code as it runs on the target using sliders and other signal
producers on the host

e Torecord and process data from the target and present it on the host

The source and debug model functions are shown below.

2022.1 Embed 33

Model-Based Development with Embed

Autralc C-Code Ceneraicn,
Campiatan, linking, and cowoading

Plant

Host Target

Automatc C Code Generabon
Comgliaton Inkng, and downloadng

Targat intarfaca Plant

signol display
- Intaractve gains
- Plots

Host Target

You create a debug diagram from your source diagram by:
e Saving the source diagram with “-d” appended to the file name.

e Replacing the compound block from which you generated the executable code with a Target Interface block. The
pin labels on the Target Interface block will be populated with the pin names from the compound block.

When you simulate the debug diagram, the Target Interface block automatically downloads the OUT or ELF file to the
target and starts running it. While the target executable runs, you can communicate with the target via the inputs and
outputs on the Target Interface block. Note that because the target always runs in real-time, the debug diagram is
configured to run in real-time mode when communicating with the target. That way, Embed is in sync with the target.

Communication interfaces

For Texas Instrumens C2000 and ARM Cortex M3 devices, and STMicroelectronics STM32 devices, Embed uses a JTAG
HotLink to communicate data between the host and the target device. For Arduino devices, Embed uses a serial HotLink.
And for Linux devices, Embed uses an Ethernet or Wi-Fi HotLink.

The HotLinks support both normal and high-speed data collection. In nhormal mode, commands are sent from the host to
the target and data is collected from the target for the host. The signal transfer rate is limited to approximately 200
words/sec.

During the PIL and HIL phases, data must be acquired at a much faster rate. For example, you will have to record data at
the frequency that the control algorithm is running at, which could be 10kHz or greater. Embed provides the Monitor Buffer
Read and Monitor Buffer Write blocks (for all targets except Arduino, Linux, and MSP430) that execute over the HotLink
specifically for this purpose. The monitor buffer provides a mechanism for a debug diagram to buffer a large volume of
data acquired on the target at the target’s native sample rate, transmit the data periodically over the slower HotLink from

34 2022.1 Embed

Model-Based Development with Embed

the target to the host, and then make the buffer contents available as a vector of data on the host application. The monitor
buffer shown below uses the buffer mechanism to capture and transmit a buffer of 1001 elements collected at 10,000Hz
from the target. The host, running at 100Hz, then plots the sample values much like a triggered oscilloscope trace.

FZa069M T y— : F26065M
Monitor Buffer Read 0 Buiier 2] Plot o & js | signal __Monitor Buffer Write 0
» 0
- . | 1
Monitor Buffer Read Properties ‘ g, : i Monitor Buffer Write p'opem-
|
Buffer Size [wordsp 1001 Buffer 1D: [U '] {{; UO 5 | Buffer Size [woedsk 1001 Buffer ID: [U -]
|
i Samples
| ok] Cancel | [Hep ‘ » : I ok] [Concat Help
|
|

HOST TARGET

Adjusting C2000 and ARM Cortex M3 target update time

Since the JTAG HotLink has bandwidth limitations, Embed lets you adjust the target update time such that the sensor and
actuator data transfer between the plant and controller remains synchronized. In addition to the plant diagram, the host
model is enhanced with sliders and other signal producers allowing parameters to be interactively adjusted while the
controller is running. And, as previously mentioned, the host model can be modified to capture high-speed data collection
from the target using the Monitor Buffer Read and Write blocks.

Since the modeling uncertainty of the target model used in the SIL phase is removed in the PIL phase, the level of
confidence in meeting the design requirements is improved compared with the SIL phase.

A PIL application using a Texas Instruments F28069M
LaunchPad microcontroller connected to Embed via USB is
shown in the photo on the right.

Measuring CPU utilization

Knowing the level of target CPU utilization is extremely
important in embedded applications. Typically, values in the
70% range are considered acceptable for many
applications. Applications that consume more are prone to
over framing, a situation where not all the control functions
are fully executed and completed in the sample time
allotted for the controller. The Target Interface block lets
you create an output pin that displays the percent CPU
utilization on the target while the executable file is running. In addition, you can place Get CPU Usage blocks within any
block in the code-generated executable file to output the individual CPU usage for that specific block.

Hardware-in-the-Loop simulation

During HIL simulation, the PIL is extended to include the plant hardware, sensors, and actuators. Often, however, in large
systems, it may not be feasible or even possible to include the entire plant, all the actuators, and all the sensors. In these
situations, some of the sensors, some of the actuators, and parts of the plant (as they become available) are included as

HIL devices with the remainder simulated in models executing on the host.

Like in the PIL phase, automatic code generation of the control algorithm is loaded and executed on the target while the
host is used to model the parts of the plant for which hardware is not available, as well as to interactively adjust
parameters of the control algorithm and capture and present signal time history data.

The HIL phase always executes in real time. Even though the entire plant may not be actual hardware, the ability to test
plant components (hydraulic pumps, lines, accumulators, actuators, electric servos, pneumatic actuators, and so on) in
the controlled environment of the HIL greatly improves the level of confidence in meeting the design requirements.

2022.1 Embed 35

High power safety concerns

During the HIL phase, HIL systems will contain high power, which is a serious safety concern. State charts are especially
suited to implement control flow logic, including fault detection and fail-safe modes to address faults with respect to both
human and machine safety. For example, consider the model below, of an HIL application that starts with a high voltage
power supply and applies it to a motor to achieve a setpoint speed.

Host - Setpoints
& Commands

(Of —>{stadBution -
off
(Onl—>{ StopBution -
(O |—{ thermalAlarm }-

Host

Embedded Controller - State Machine

— -
PowerSupplyAlarmStatus GBL

State Machine

'm
L\ oonuscnd—o{DC bus i}
\ & PyM_vonCrdt—p{ HWenable |-
S{stopBution}drees \f =
‘ \{] PVM_SWonCmd -y|_§\‘.'e_m:vle }

“${ normalStog>

Embedded Controller - Control Algorithms

PowerSupply i tumed on when DC bus onCmd goes high
using simulated GPIO (see Powsr Status)

hCheck Mol powel——b{ PonersupplyStRusGEL
Machene is turned on when SWenable goes high

PowerSuppiyStatusGBL 5h (i
! enable (110

Model-Based Development with Embed

Host - Data Collection

{){ Macmr&SEmde&r—b 5 Plot =@

6 fachine Speed
—Power Supply (1/0 = ON/OR)

#{HWenable {105 4|

L 1
\
»{STensBie (T 3 f \

» 2 f \

41

s

PO S I SO R
0 5 10 15 20 26 30 35 40
> Time (sec)

Host

__/ Hotlink

A state chart is used to sequentially turn on the power supply, turn on the PWM'’s, and supply the power to the motor.
Once the motor is powered, a block diagram controller algorithm maintains its speed. The host model (shown in the blue
outlined boxes) is used to control the state machine and plot data collection. The target model (shown in the red outlined
box) executes the C code that was automatically generated by the state machine and control algorithm sections of the

model.

36

2022.1 Embed

Automatically Generating
Executable Code

Embed generates production-quality C code from any diagram for a variety of platforms including Texas Instruments;
STMicroelectronics; Linux AMD64 and Raspberry Pi; and Arduino devices. The generated code is both compact and
highly optimized, both of which are essential for low-cost microcontrollers and processors, and high-speed sampling rates.

The C code can also be generated as DLLs for Microsoft Windows, as well as other microcontrollers using general
support libraries and special drivers.

Once code has been generated, Embed automatically builds an executable or DLL (if the Windows target is selected),
downloads it to the target device, and establishes an interactive communication link allowing you to control the target
execution from the Embed application, as well as collect data from the target to the host during its execution.

When Embed generates code for an embedded target, it uses statically allocated data structures so there is no possibility
of failure due to lack of memory resources during program execution.

Target support
Current target support includes the following devices:
e Arduino Leonardo, Mega, and Uno
e AMDG64
e Raspberry Pi Zero, Zero W, 1A+, 1B+, 2B, and 3A+, 3B, 3B+, and 4B
e STMicroelectronics STM32 FOx, F103x, F3x, F4x, F7x, GOx, G4x, H7x, and L4x
e Texas Instruments C2000, MSP430, and ARM CortexM3

The generated C code can also be ported to other platforms for compilation and linking, provided you have an ANSI C
compiler and the C-Code Support Library Source Code the platform.

Resources used by targets

Embed target support uses timer and interrupt resources. The following table shows the resources used by the supported
targets:

Target Timer Interrupt

Arduino 1: Used by Uno and Mega N/A

2022.1 Embed 37

Automatically Generating Executable Code

2: Used by Leonardo

Main loop is scheduled using the
16-bit timer and not changeable

by user
AMD64 Main loop is scheduled using N/A
Raspberry Pi Linux timer provided by the OS
and not changeable by user
STMicroelectronics STM32 SYSTICK (24-bit down count) N/A
Texas Instruments ARM Cortex
M3/M4
Texas Instruments, Delfino, User selectable User selectable

F280x, F2812, MSP430, Piccolo

Texas Instruments LF2407 3 2

Embed handles interrupts for the main control rate timer, GPIO pins, DMA, CAN, PWM, QEP, CAP, UART, SCI (serial),
I2C, SPI, ADC, watchdog, and power reset.

You can exchange data with Embed from the interrupt handler via the Extern Read and Extern Write blocks.

Note: The assembler code for the LF2407 vector tables is supplied in the INSTALL\CG\LIB directory so that you can add
your own interrupt handlers.

Target resources managed by Embed

Embed lets you access most of the resources available on a target. Managed resources include timer counters, GPIO
pins, DMA, CAN, PWM, QEP, CAP, UART, SCI (serial), 12C, SPI, ADC, watchdog, and power reset.

Embed installs an interrupt handler that executes the main body of the C code from your diagram. You can select the
source of the interrupt in the corresponding Target Config dialog box. If you are using the debug diagram the sample rate
set in the Target Interface block is transmitted to the target via the HotLink interface. This allows easy experimentation
with the base sampling rate of your algorithm on the target.

Peripheral devices like analog and digital ports on the target can be accessed by simply dragging the corresponding block
off the Embedded menu. The blocks can access their corresponding ports immediately without target code generation and
will also access the ports when compiled as part of a target system downloaded to execute on the target. For the PC32
board, there is no muxing logic for analog I/O channels, and thus interrupts are enabled across analog I/O ports accessed
by Embed.

During a simulation run, data is continuously sent from the PC to the target and target data is continuously sent back to
the PC via the HotLink interface. This data movement between PC and target is handled during the target idle time
between timer interrupt processing. As the timer interrupt rate increases, less time is available to the idle process to
update the PC, and the PC will see less frequent updates. However, since priority is given to the timer interrupt task, the
algorithm running on the target will handle analog and digital I/O with no interruption.

Generic MCU target support

The Generic MCU block is used to generate code that will execute code on an embedded target that is not currently
supported by Embed. This block generates skeletal embedded code; that is, static RAM and optimized CPU usage. In
most cases, when you use the Generic MCU block, you will also need the C Support Library Source Code add-on module.

38 2022.1 Embed

Automatically Generating Executable Code

Preparing a diagram for code generation

There are several housekeeping chores you should perform before generating code from your source diagram on the host
computer.

Configure the target

You use a Target Config block to choose the target device, crystal multiplier, and processor speed. These settings are
saved with the diagram.

There should be only one Target Config block in your diagram.

Configure the compound block to communicate with the target

A Hotlink is used to interactively control the target from the host computer and to collect real-time data from the target to
be presented or stored on the host computer.

e (C2000, ARM Cortex M3, and STM32 targets use a JTAG HotLink
e Arduino targets use a serial HotLink
e Linux (AMD64 and Raspberry Pi) targets use an Ethernet or WiFi Hotlink

To use a HotLink, you must encapsulate the controller algorithm in a compound block. It can be handy to label the input
and output connectors with unique names.

You can create custom rate functions by configuring specific parameters in the compound block.

Targets with no floating-point unit

For embedded targets that have limited or no support for floating-point instructions, you can use fixed-point arithmetic
blocks. This trade-off has a very limited impact on computational accuracy.

Target devices with no file system

Because many small RAM embedded targets have no file system, you cannot use import or export blocks with them. You
can, however, use map blocks. Embed automatically enables embedding the map data in the generated C code and will
automatically select them for certain small targets, like a C2000 device. Map tables will be burned to FLASH memory
along with the program code.

Variable names

Variable names in your diagram are retained in the generated code with the following condition: if a variable name
includes the punctuation characters + - * # @ ! they are converted to _ .

Consequently, when naming blocks that will eventually be compiled into C code, avoid names that differ only in the above
punctuation characters. For example, do not name two blocks Block+ and Block-. They will both be translated into Block_.

Speed considerations

To maximize performance on the target:

2022.1 Embed 39

Automatically Generating Executable Code

e Avoid use of floating-point blocks if you are targeting a fixed-point system. To identify floating-point blocks,
activate View > Data Types. Floating-point pins are colored red.

e Avoid use of divide (/) blocks. Division is 10 to 20 times slower than multiplication: when dividing by a constant,
multiply by the inverse instead.

e Avoid use of numerical integration (1/S) blocks. These blocks use floating-point operations and invokes the
integration engine.

Code generation considerations for low RAM targets

The C2000, ARM Cortex, and STM32 targets support both small and large RAM configurations. The MSP430 and Arduino
targets support only small RAM configurations. The code generator emits small RAM code for an embedded target unless
it encounters:

e Integration blocks (derivative, integrator, limitedintegrator, resetintegrator)

e Linear System blocks (stateSpace, transferFunction)

e Continuous timeDelay blocks

e Matrices used as I/O to enabled compound blocks or top-level compound blocks

When generating code for C2000, ARM Cortex, or STM32 targets and you include one or more of the above blocks and
you activate Check for Performance Issues in the Code Generation dialog box, Embed warns you that large RAM blocks
may not run efficiently on the target along with a recommendation on how to update your diagram. You can continue with
code generation; however, the generated code may not fit in the target RAM and the code will run slower.

When generating code for Arduino, MSP430, or STM32 targets, you cannot include one or more of the above blocks. If
you do, Embed halts code generation and issues a message telling you to replace the blocks.

Note that AMD64 and Raspberry Pi are not low RAM targets. The code generator always emits large RAM code for them.

Determine stack and heap use

For all targets except Arduino, to determine how much stack and heap your diagram uses when running on the target,
select Embedded > your-target-device > Target Interface > Get Target Stack and Heap after running your diagram
on the target in debug mode. If you have conditional subsystems, be sure to exercise all of them before executing this
command to get an accurate stack usage report.

Probe Target >
Connected ko part: ST 32
CPU Speed [MHz]: 16

Fultiple of Crpstal Frea: s
Stack Uzed: 20
Heap Uszed: n

Done Help

40 2022.1 Embed

Blocks that generate stand-alone C code

Most blocks and State Chart elements do not require a foreign RTOS in order to generate stand-alone C code: this
happens automatically during the code generation process. However, some blocks are translated into either an ASCI|

Automatically Generating Executable Code

data stream or a call to an EMPTY function. If you require the generated code for these blocks, you will need to purchase
the Embed/Core Source Code Library.

The following tables show how standard and OpenVision blocks and StateChart elements are treated during code

generation.
Standard blocks
Generate C
Block Category Block Name Code RTOS Dependency
Animation
All Animation blocks NO YES
Annotation
bezel NO NO
comment NO NO
date YES NO
label NO NO
scalarToStruct YES YES
scalarToVec YES NO
structToScalar YES NO
variable YES NO
vecToScalar YES NO
wirePositioner YES NO
Arithmetic
1/X YES NO
* YES NO
/ YES NO
abs YES NO
complexToRelm YES YES
convert YES NO
gain YES NO
magPhase YES NO
pow YES NO
sign YES NO
summingJunction YES NO
unitConversion YES NO
-X YES NO
Audio
Audioln YES YES

2022.1 Embed

41

Automatically Generating Executable Code

AudioOut YES YES
Boolean
I= YES NO
== YES NO
< YES NO
<= YES NO
> YES NO
>= YES NO
and YES NO
not YES NO
or YES NO
xor YES NO
DDE
All DDE blocks NO YES
Extensions
All Extensions blocks NO YES
Fixed Point
atan2 YES YES
(1=) YES NO
(== YES NO
(-X) YES NO
< YES NO
<= YES NO
> YES NO
>= YES NO
abs YES NO
and YES NO
convert YES NO
cos YES YES
crclé YES YES
div fixed point YES YES
fixed point constant YES NO
fixed point gain YES NO
fixed point limited
integrator YES YES
limit YES YES
merge YES NO
mul fixed point YES NO
not YES NO
42 2022.1 Embed

Automatically Generating Executable Code

or YES NO
P1 Regulator YES YES
PID Regulator YES YES
sampleHold YES NO
shift fixed point YES NO
sign fixed point YES NO
sin fixed point YES YES
sqrt YES NO
sum_fp YES NO
transferFunction YES YES
unitDelay YES NO
xor YES NO
Integration
derivative YES YES
integrator YES YES
limited integrator YES YES
reset integrator YES YES
Linear System
stateSpace YES YES
TransferFunction YES YES
Matrix Operation
buffer YES YES
csd YES YES
diag YES NO
dotproduct YES NO*!
eigen YES YES
fft YES YES
Flip YES YES
ifft YES YES
index YES NO
indexedAssign YES YES
invert YES YES
linearSolve YES YES
matrixSize YES NO
matrixConst YES NO
matrixin YES NO
matrixMerge YES YES
matrixOut NO NO
maxElement YES YES

2022.1 Embed

43

Automatically Generating Executable Code

meanSmooth YES NO
medianSmooth YES YES
minElement YES YES
mldivide YES YES
multiply YES NO
polyFit YES YES
polyRoots YES YES
psd YES NO?
reshape YES NO
section YES YES
splineFit YES YES
transpose YES YES
vectorSort YES YES
vsum YES YES
Nonlinear
case YES NO
crossDetect YES YES
deadband YES YES
delayedSwitch YES NO
demux YES NO
int YES NO
limit YES YES
map YES YES
max YES NO
merge YES NO
min YES NO
quantize YES YES
relay YES YES
sampleHold YES NO
OPC
All OPC blocks NO YES
Optimization
All Optimization blocks
Random Generator
Beta YES YES
cauchy YES YES
erlang YES YES
gamma YES NO
gaussian YES YES

44 2022.1 Embed

Automatically Generating Executable Code

pareto YES YES
PRBS YES YES
rayleigh YES YES
triangular YES YES
uniform YES YES
weibull YES YES
RealTime
All RealTime blocks NO YES
Signal Consumer
eventLog YES YES
display YES YES
error NO NO
eventDisplay NO NO
execOrder YES NO
export NO NO
histogram NO NO
light NO NO
meter NO NO
plot NO NO
plot3D NO NO
polarPlot NO NO
spectrumDisplay NO NO
stop NO NO
stripChart NO NO
video NO NO
Signal Producer
button YES NO
constant YES NO
dialogConstant YES NO
dialogTable YES NO
import YES YES
parabola YES NO
pulseTrain YES NO
ramp YES NO
realTime YES YES
sawtooth YES NO
sine YES NO
slider YES NO
Square YES NO

2022.1 Embed

45

Automatically Generating Executable Code

step YES NO
timeOfDay YES YES
timeStamp NO YES
triangle YES NO
Time Delay
timeDelay YES YES
unitDelay YES NO
Transcendental
acos YES NO
asin YES NO
atan2 YES YES
bessel YES YES
cos YES NO
cosh YES NO
exp YES NO
In YES NO
log10 YES NO
sin YES NO
sinh YES NO
sqrt YES NO
tan YES NO
tanh YES NO

1. If the vector size is greater than 6, a foreign RTOS is required.

2. If the inputs are anything except constants, a foreign RTOS is required.

OpenVision blocks

All OpenVision blocks can generate C code; however, they all require a foreign RTOS.

StateChart elements
State Chart
Element Generate C Code RTOS Dependency
choice YES NO*
composite state YES NO
deep history YES YES
entry point YES NO
exit point YES NO
final state YES NO
fork YES NO

46 2022.1 Embed

Automatically Generating Executable Code

initial state indicator YES NO
junction YES NO
state YES NO
state chart YES NO
terminate YES YES

1. If there is an outgoing transition on a choice state with the [else] guard, no foreign RTOS is required; otherwise, there
is a call for stopSimulation() and a foreign RTOS is required..

Generating and downloading code to target devices

The following code generation options are available for each target.

Target RAM FLASH

AMD64 v

Arduino v
ARM Cortex M3 v v
C2000 v v
MSP430 v
Raspberry Pi v

STM32 v

You can also generate C code that can be ported to other platforms for compilation and linking, provided you have an
ANSI C compiler and the C-Code Support Library Source Code

You can also generate code in batch mode that runs in FLASH.

Generate and download code to run in RAM on ARM Cortex M3, Linux, and
C2000 targets

During the automatic code generation process, Embed generates a C file from your diagram, then links it with the
necessary object files to create an executable file (OUT) to run on the target.

Follow this procedure to generate code to run in RAM on an ARM Cortex M3, AMD64, Raspberry Pi, or C2000 device.
Note that when downloading the code to AMD64 or Raspberry Pi, Embed uses the following ports:

e TCP ports 50009 and 57893
e UDP ports 50002, 50003, and 57892

Additionally, when targeting a Raspberry Pi device, you can ensure the executable runs on all Raspberry Pi devices by
selecting the slowest Raspberry Pi devices, either 1APlus or 1BPlus.

For the ARM Cortex M3 and C2000 devices, you can alternatively generate code to run in FLASH.

1. Open the diagram.

2. If you are generating code for a subsystem, select the compound block that contains the subsystem.

2022.1 Embed 47

3.

Automatically Generating Executable Code

Choose Tools > Code Gen.

Code Generation Properties

Result File: blinkF 28069.C

Result Dir; C:\altair\Embed 20200

Target: F280% v

Subtarget (set in target config): F28069

Optimization Level: [] check for Performance Issues
|ze selected compound edge pins for data exchange (enables embedded debug)
Embed Maps in Code [] add Stack Ched: Code

[] call from Foreign RTOS/User App On-Chip BRAM Cnly

] indude Blodk Nesting as Comment [] Target ELASH

[]Enable Preemption in Main Diagram
Stack size: | 512 Heap size: 1024

Perindic Function Mame; cgMain

Code Gen View, . Compile... Download. ..

Do the following:

Under Result File, check that the file name displayed is named currently-open-diagram-name.C.

Under Result Dir, check that the directory is <Embed-install-directory>\cg. If it is not, click ... to update the
directory.

Under Target, choose the platform you are targeting. By default, Embed uses the last target you specified for the
diagram.

Under Subtarget, check that the selected CPU is correct. If it is incorrect, click Quit and update the Target
Config block in the diagram. After you save the diagram and click on Tools > Code Gen, the subtarget will
reflect your change.

Choose the remaining code generation parameters.

Click Compile. The following actions are performed:

The integration algorithm is set to Runge Kutta 4th order if it was previously set to an algorithm more complex
than Runge Kutta 4th order.

A C file is generated. Blocks are translated either directly into one or more C operations or into one or more calls
to the Embed C Support C support library. A small set of blocks are unsupported in Embed and are translated
into function calls that produce EMPTY returns.

The C compiler included with the Embed hardware kit is invoked to compile and link the C file, support libraries,
and header files to create an OUT file, which is stored in the same location as the C file.

An MS/DOS window is opened in which to view the code generation, compilation and linking phases.

Click any key to exit the MS/DOS window.

48

2022.1 Embed

Automatically Generating Executable Code

8. Click Download in the Code Generation dialog box to start the process of downloading the OUT file to your
embedded target. The following dialog box appears.

Download to F280X >

Target Execution File:

Thiz dialog can anly download to Bab. Please use Code Composzer or
[niflazh to burn wour ouk file ta flagh.

[Qut | | Cofinfo. | | Download | | Help

9. Under Target Execution File, specify the OUT file to be downloaded, if it is not already set to the file path.

10. Click Coff Info if you want to access information about the sizes of the various linker segments, including data, text,
and initialization.

11. Click Download to download the code to the target RAM.

2022.1 Embed

49

Automatically Generating Executable Code

Generate and download code to run in FLASH on Arduino, MSP430, and
STM32 targets

During the automatic code generation process, Embed generates a C file from your diagram, then links it with the
necessary object files to create an executable file (OUT or ELF) to run on the target. When you generate executable code
for an MSP430 device or Arduino board, the code can only run in FLASH due to the limited amount of RAM on them.

If you want to flash code to a Texas Instruments C2000 or ARM Cortex M3, see Flashing generated code with UniFlash.

1. Open the diagram.

2. Choose Tools > Code Gen.

Code Generation Properties

Result File: | BlinkLedUno.c

Result Dir: C:\Altair \Embed2020%:g
Target: Arduing ~
Subtarget (set in target config): Uno

Optimization Level:

IUse selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code Add 5tack Chedk Code
[]call from Foreign RTOS User App On-Chip RAM Only
[]indude Block Mesting as Comment Target ELASH
] Enable Preemption in Main Diagram
Stack size: 64 Heap size: 0
Periodic Function Name: cgMain

Code Gen View... Compile... Download. ..

3. Do the following:

Under Result File, check that the file name displayed is named currently-open-diagram-name.C.

Under Result Dir, check that the directory is <Embed-install-directory>\cg. If it is not, click ... to update the
directory.

Under Target, choose the platform you are targeting. By default, Embed uses the last target you specified for
this diagram.

Under Subtarget, check that the selected CPU is correct. If it is incorrect, click Quit and update the Target
Config block in the diagram. After you save the diagram and click on Tools > Code Gen, the subtarget will
reflect your change.

4. Choose the code generation parameters.

5. Click Compile. The following actions are performed:

The integration algorithm is set to Runge Kutta 4th order if it was previously set to an algorithm more complex
than Runge Kutta 4th order.

50

2022.1 Embed

Automatically Generating Executable Code

e A Cfile is generated. Blocks are translated either directly into one or more C operations or into one or more calls
to the Embed C support library. A small set of blocks are unsupported in Embed and are translated into function
calls that produce EMPTY returns.

e The C compiler included with the Embed hardware kit is invoked to compile and link the C file, support libraries,
and header files to create an OUT or ELF file.

¢ An MS/DOS window is opened in which to view the code generation, compilation and linking phases.
6. Click any key to exit the MS/DOS window and return to the Code Generation dialog box.

7. Click Download in the Code Gen dialog box to start the process of downloading a stand-alone OUT or ELF file to
your embedded target. The following dialog box appears.

Download to Arduino >

T arget Execution File:
C:SAlkairsE mbed 20204 ghBlink Ledlnao. &l |

Drownload directl to FLASH

[Qut | | Coffinfo.. | | Download | | Help

8. Under Target Execution File, specify the OUT or ELF file to be downloaded, if it is not already set to the file path.

9. Click Coff Info if you want to access information about the sizes of the various linker segments, including data, text,
and initialization.

10. Click Download to download the code to the target FLASH.

Generate and download code to run in FLASH in batch mode

When you only care about the final results of a simulation or code generation, and you are not interested in looking at the
simulation graphically, you can create a batch file that contains commands to start Embed with a specific diagram and
execute the diagram, generate code, and download it to FLASH without user interference. To do so, use any editor to
create a BAT file that contains the following:

<install-path>\vissim32.exe -compile -target=target-name -flash complete-path-to-block-diagram.vsm

You must specify the -flash argument in conjunction with the -target and -compile arguments. Specify the target-name in
the same way that it appears in the Target dropdown in the Tools > Code Generation dialog box. For example, -
target=F280X.

Separate arguments with spaces.
Using the code generation parameters

You can select one or more parameters in the Code Gen dialog box to control how the code is generated.

2022.1 Embed o1

Automatically Generating Executable Code

Code Generation Properties

Result File: |

Result Dir: C\AltainEmbed2020\cg
Target Arduino ~
Subtarget (set in target config): Uno

Optimization Level:

Use selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code Add Stack Check Code
[call from Foreign RTOS/User App On-Chip RAM Only
Include Block Mesting as Comment Target FLASH
[]Enable Preemption in Main Diagram

Stack size: 512 Heap size: 1024
Periodic Function Name: cgMain

Code Gen View. . Compile... Download...

Add Stack Check Code: Causes additional code to be generated that checks stack usage. The stack usage is reported
with the Get Target Stack and Heap command.

Call from Foreign RTOS/User App: Lets you call the generated code from either a foreign RTOS on an embedded
system or a user application.

Check for Performance Issues: Alerts you of operations that run slowly on an embedded system and advises how to
change your diagram to improve performance. This parameter is not available for MSP430 and Arduino targets.

Embed Maps in Code: Builds the data files from any map block in the generated code. If the target does not have a file
system, Embed automatically builds the data file in the generated code. If the target has a file system and you want to
change the map file or if you want Embed to read the data file when the embed application starts running, turn this
parameter off. This parameter is not available for Arduino targets.

Enable Preemption in Main Diagram: Allows higher priority interrupts to preempt execution of the main diagram.

Heap Size: Allocates memory on the target. The heap is mainly used by matrix blocks and Embed housekeeping
routines. Generally, 0x400 is sufficient for initialization of these routines.

To see how much heap is required in your target application, check the initMatVars() function in the generated C file. Each
Mat Decl uses argl * arg2 * 4 bytes of heap. For a good estimate of heap usage, add together all the bytes, plus an
additional 500 bytes of Embed start-up heap. If your application has not allocated enough heap, Embed issues the
following warning:

Insufficient memory to run on target
To correct this situation, increase the heap size and recompile.
This parameter is not available for Arduino targets; the heap is automatically allocated.

Include Block Nesting as Comment: Includes comments with the generated code that indicate the source compound
block in the Embed diagram from which the generated code came.

Use selected compound edge pins for data exchange: Enables HIL operation. The generated code running on the
target to send and receive data from Embed running on the PC.

This parameter is dimmed when no compound block is selected.

52 2022.1 Embed

Automatically Generating Executable Code

Minimize RAM Usage: Minimizes usage of RAM by omitting numerical integration and floating-point filters. The reward is
that the target application will use less memory and fit on a lower-cost part.

On-Chip RAM Only: Some parts (like the F2812) have both off-chip and on-chip RAM. Activating the On-chip RAM Only
option will use only on-chip RAM. Note that if you are targeting an Arduino, F280x, or MSP430 device, this parameter is
dimmed because the targets do not have off-chip RAM.

Optimization Level: Specifies compiler optimization level, from 0 (no optimization) to 4 (highest level). In rare
circumstances, Level 4 may yield inconsistent results, necessitating a lower level of optimization.

Periodic Function Name: Indicates the name of the main Embed time step function. This option can be ignored if you
have not activated Call from Foreign RTOS/User App.

Result Dir: Displays where the result file will reside. If you want to change the directory, click

Result File: Indicates the C file to be created. By default, the name of the file is the name of the open block diagram.
When you press Compile, Embed automatically creates the C file, then compiles and links it to create an OUT or ELF file.
You can alternatively press Code Gen to create only a C file. You can open and browse the C file by clicking on Browse.

Stack Size: Allocates memory on the target machine. The stack is used by function calls. Generally, 0x200 is adequate
for most applications. This parameter is not available for Arduino targets; the stack is automatically allocated.

Subtarget: Indicates the specific target device. The subtarget is set in the Target Config block in the diagram.

Target: Indicates the embedded platform that the generated code will run on. Only the installed board libraries will appear
in this drop-down list box. To create a Windows DLL, select Host. To create a simulation object, you must first select a
compound block, then select Simulation Object from the Target drop-down list.

Target FLASH: Most embedded targets have FLASH memory. This is read-only memory that will retain its information
even after power has been turned off.

When activated, Target FLASH causes the linker to allocate code and constants in FLASH and data in RAM. To burn the
resulting executable to FLASH on C2000 and ARM Cortex M3 devices, you need to use a third-party product, like Texas
Instruments UniFlash. When Target FLASH is not activated, code and data are written to RAM.

For Arduino targets, code is automatically written to FLASH memory; you can ignore this parameter.

Displaying Coff information

When you click on the Coff Info button in the Download dialog box, Embed looks at the generated OUT or ELF and
extracts information pertaining to the allocation of FLASH and RAM usage. Because there are limited amounts of FLASH
and RAM on a device, it is a good idea to periodically check to see how close you are to exceeding your device’s limits.
Vendors sell devices with varying amounts of FLASH and RAM. If you are substantially under or approaching your
device’s limits, you should consider moving to a device that better aligns with your usage requirements.

2022.1 Embed 53

Automatically Generating Executable Code

Indicates the start and end
address of the executable Indicates the image size
image on the target and offset into the file

-
COFF Information [
DSP Execution File: C:A\Alain\Embed# ShcghblinkF28377.aut /
'Sactlnn Start End Size Offset Flags Loadable -
/" 00000 <0000 2 0=10 o
. 00000 (0=0000 0 5902 0=10 1)
lrp]dlcate[-_s whether 0480000 0+80000 i 0 081 0 Indicates whether the
=} SeC_IOn 15 eset (x3FFFCO 0x3FFFC2 2 1] Ox141 code or datdl is loaded
code or data et 03FFFCO (%3FFFCO 0 i %] Y o
teal 0+B000 0433F 831 503 k0 1 Indicates chargdferistics
cinit 04333F 043388 121 7565 Oed0l 1 of the section
Econst 0x0000 (w0000 0 7RO7 Ow10 o |
_switch 00000 (0=0000 0 TB07 0=10 o l
.dmaram 0x0000 (w0000] 7807 Ow10 o I
1Qmath 0x0000 (0=0000 0 Taoy 0=10 o Il
00000 (0=0000 0 eay 0=10 1) I
0+0000 00000 0 7807 010] |
.stack 0x0000 00200 512] 0x180] L
_SYsmem 0x0000 0x0000 0 TEO07 010 u] 1
_EsyYEmEM 0x0000 0x0000 0 TEO7 010 u]
ebsz 0<33B8 0x83ED 53 o 0<180 o
MTOCRAM 00000 (0=0000 0 TB07 0=10 o
CTAMBAM nu0nnn MON0n n iz Mwin n ki
Total memory used an targetF2812): Program = 835, Initialized D ata = 121, Uninitislized data = 53

Support library

The Embed support library is a collection of precompiled object files that support blocks for which there is no direct
translation into C code. These blocks include:

e 1D, 2D and 3D map table lookup

e crossDetect

e deadband

e FFT, inverse FFT, Power Spectral Density

o floating-point transferFunction (fixed-point is generated in-line)
e integrator

e limitedintegrator

e matrix multiply, inverse, add, power, exponent
¢ Random number generation

e resetintegrator

e stateSpace

e timeDelay

Flashing generated code with UniFlash

If you want to flash code to a Texas Instruments C2000 or ARM Cortex M3, you can use the Code Composer Studio™
UniFlash tool. Before you begin, make sure your device is plugged in to your computer and that UniFlash (v3.x, 4.22, or
5.0.0.2289) is installed. If you have not yet installed UniFlash, see the Altair Embed Installation Guide or go to the TI CCS
UniFlash web page. We recommend installing UniFlash 5.0.0.2289.

54 2022.1 Embed

http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

Automatically Generating Executable Code

1. Open the diagram.
2. Click Tools > Code Gen.

Code Generation Properties

Result File: | biink280x.c

Result Dir: C:\Altair\Embed2020%g

Target: F280% v
Subtarget (set in target config): F2a08

Optimization Level: [check for Performance Issues

IUze selected compound edge pins for data exchange (enables embedded debug)
Embed Maps in Code [] Add Stack Chedk Code
[] call from Foreign RTOS User App On-Chip BAM Only
[]indude Block Mesting as Comment
[]Enable Preemption in Main Diagram

Stack size: Heap size:

Periodic Function Name: cgMain

Code Gen View. .. Compile... Download. ..

Activate Target FLASH. You can leave the remaining parameters as they are.

Click Compile to create an OUT file that will run from FLASH. The OUT file is stored in the specified result directory.
Click Quit.
Start UniFlash.

N oo g M w

Under New Configuration, select your target device and connection.

2022.1 Embed 55

Automatically Generating Executable Code

UniFlash Session v About

v New Configuration

- Detected Devices

@ selected Device: TMS320F28069 LaunchPad

Category: All | C2000 | mmWave | MSP | PGA | Safety | Tiva | UCD | Wireless

Q
4 LAUNCHXL-F28027 LaunchPad On-Chip 4
| e LauncHxL-F28069M LaunchPad On-Chip
& LAUNCHXL-F28377S LaunchPad On-Chip
® LAUNCHXL-F28379D LaunchPad On-Chip
Ml F28M35E2081 On-Chip
Wl F28m3sH22C1 On-Chip
Bl F28m3sHs2C On-Chip
B F28m35Mm2081 On-Chip
Bl F28m35Mm22CT On-Chip
Bl F28m35Mms2C1 On-Chip
M F28M36H33B2 On-Chip
B F2sMm36H33C2 On-Chip
M F28M36H53B2 On-Chip

Q Selected Connection: 9 Texas Instruments XDS100v2 USB Debug Probe (Auto Selected)

oEm -

In the above window, the Texas Instruments F28069M LaunchPad is selected. The corresponding XDS 100v2
USB Debug Probe connection is automatically selected.

56

2022.1 Embed

Automatically Generating Executable Code

8. Click Start to select and download your OUT file to FLASH. The following dialog box appears:

UniFlash Session v About £ Sewings

Configured Device : Texas Instruments XDS100v2 USB Debug Probe > TMS320F28069 [download cexml] C28xx
I Program Select and Load Images

Settings & Utilities Flash Image(s)

Memory B Browse

Standalone Command Line

= Quick Settings

Create your personalize settings view. Click to add settings.

O Console

S ——— = = A

9. Under Flash Image(s), click Browse and select the OUT file you created in Step 4.
10. Under Available Actions(s), click Load Image.

Note: To verify that the OUT file was written to FLASH, click Verify Image.
11. Unplug your device and then plugged it back in; the code will now run in FLASH.

Note: In order to boot from FLASH, the GPIO lines must be set to a specific pattern. For example, to boot from
FLASH on the F28069M, GPIO37 and GP1034 must be High, and SW1 and SW2 on the LaunchPad must be in the
ON position. For more information, refer to the Boot Selection Mode in the Texas Instruments Technical Manual for
your device.

2022.1 Embed o7

Automatically Generating Executable Code

Controlling execution on embedded targets

Create custom-rate functions

You can control how code is executed on a target by activating specific parameters (show within the red rectangle) in the
compound block containing the controller algorithm.

B Compound Properties *

Compound Name

Compound|

Type Ctd+ENTER to enter a new line
Protection Appearance
[OJlocked [JBeadOnly []Use Bimap | Select Image...

oot [| Clsacio N

[] Hide in Display Mode [[] Do naot Snap to Grid Locally
[] Create Dialog from contained Dialog Constants
[arag gy Ny Lo - 1 L
= = -
ﬁﬁnabled Execution
Copy Fash Function to RAM
[] Local Time Step: 0.01
Codegen as Background Thread
[] Execute on Intemupt: | Salect
Allow Intermupt Handler Preemption
[JUse Local Bounds: Start: 0
End: 0
"!-._:—. ik |
Use Implicit Solver: | Setup Solver...
Contained Block Count: 1
Contained Computational Blocks:
Cancel Help

Controlling block execution

With Enabled Execution activated, you can control when the block executes in simulation and generates code on the
target. For more information, search for Conditional Execution under Help > Contents: Modeling and Simulation.

Copying code from FLASH to RAM

Typically, code runs slower in FLASH than RAM. If speed is critical, activate Copy FLASH Function to RAM to copy
code from FLASH to RAM when you power up the embedded target. If you are generating code to run in RAM, this
parameter can be ignored.

Specifying a local step size and local bounds

The Local Time Step parameter lets you specify a step size larger than the base system step size. It must be an integer
multiple of the base step. In addition, choosing a local time step will cause the block to appear with a diagonal striping to
indicate the nonstandard timing. When used with the Use Local Bounds parameter, the Local Step Size parameter
provides additional control over a multi-rate simulation. For more information, search for Multi-rate Simulation under Help
> Contents: Modeling and Simulation.

58 2022.1 Embed

Automatically Generating Executable Code

Generating code as preemptible background thread

If you select Code Gen as Background Thread, the contents of the compound block to be executed in a preemptible
background thread. It is used for operations that are not as time critical as the main loop. Embed schedules the task to run
as close as possible to the local time step rate, but since the task is no longer directly linked to the main task, the time
step can be any interval. The code generated from the compound block will be a function call.

Creating and executing interrupt handlers

For Arduino, Delfino, F281X, F280x, MSP430, Piccolo, and STM32 devices, you can create interrupt handlers from a
compound block. The compound block contains the logic for the handler; for example, incrementing a counter or sending
newly-available data through a serial or SPI port. Generally, you want your interrupt handler to be concise to avoid
impacting other operations. When you activate Execute on Interrupt, click Select to choose the source of the interrupt.

If you want to preempt the interrupt for higher priority interrupts, activate the Allow Interrupt Handler Preemption.

Set the sample rate for the target application

The code runs at a timing interval established by an interrupt generated by an onboard clock. Therefore, the generated
code runs at a hardware-generated clock rate. This base clock rate is set in the System > System Properties dialog box. It
is important to set this rate correctly since it is used to calculate digital filter coefficients and other controller parameters.
You can also change this rate in the dialog box for the Target Interface block.

If the generated code cannot keep up with the specified sample rate, you will see the following message:
Target sampling too fast
Additionally, any background idle loop tasks will be starved of CPU time and will not run.

For example, suppose you request a 10kHz sampling rate (with timer interrupts generated at 100ms), but the diagram
takes 150ms to run. This means that by the time the calculation from the diagram has finished, there is already another
pending interrupt and you are no longer maintaining the 10kHz rate.

Read and write directly to device registers

You can use the Extern Read and Extern Write blocks to read and write hardware registers. The registers have the same
names as described in the documentation for your hardware.

To configure the Extern Read and Extern Write blocks for hardware register access
1. Right-click the Extern Read or Extern Write block.

2. Inthe Properties dialog box, under Data Type, select 16-bit hardware register or 32-bit hardware register.

Control execution order

Embed enforces a top-down order of execution. Therefore, if you want to write values to a hardware register in a specific
order, simply arrange them from top to bottom.

When you have a combination of Extern Read and Extern Write blocks, and you require a specific order of execution, you
can wire the Extern Read block to an execOrder block to control when it is executed. For example, suppose you have the
following configuration:

2022.1 Embed 59

Automatically Generating Executable Code

[F281X-SPIAD 121186 >

[F281X-SPIA:0: 12018 >
[extern ref [>> > foo [>
[F281X-SPIA:0: 12018 >

It is ambiguous when the Extern Read block is executed. To enforce the order of execution, wire the Extern Read block
into an execOrder block like so:

[F281X-SPIA:0: 12018 > [extern ref | oo >
[F281X-SPIA 0 121LE]>
[F281X-SPIA.0: 12008 >

In this configuration, the Extern Read block will execute third.

Execute initialization code at boot time

For a $firstPass enabled compound block to run in the boot function, it cannot have any input pins. If there are input pins,
Embed expects the inputs must be evaluated in the control routine.

Debugging code on embedded targets
Once the generated code is deployed to the target, it may not execute as expected for several reasons:
e There are timing issues with the data acquisition and actuators
e You may not be able to maintain adequate sample speed
e The code may not fit on the on-chip FLASH or RAM
e The real-world sensor data may not be as precise as expected
e The behavior of the actual plant may be significantly different from the simulated plant

There are different techniques for debugging your diagram depending on your target.

Debugging techniques

Generated code is syntactically error free, however you may still have bugs in your diagrams, depending on such things
as algorithm memory requirements, target hardware constraints, and throughput requirements of the algorithm, to name a
few. Embed provides a collection of debug tools to investigate and solve these issues.

Controlling execution

60 2022.1 Embed

Automatically Generating Executable Code

The Start, Stop, Step, and Continue controls work on the diagram executing on the PC. If the targetinterface block is set
to synchronous operation, the target application responds to these controls; that is, it is stopped and single-stepped as
well.

2
1

2, 5 ~

1 (CGDOUBLE)

There are no restrictions on when you use the Start, Stop, Step, and Continue controls: you can pause, single-step, and
continue execution at any time.

Examining signal values
There are a several ways to examine signal values:
e Hover the mouse over a connector to view signal values.
e Connect display blocks to connector outputs to continuously update displayed values.

e Display output traces interactively in plots.

Setting state chart breakpoints

Within a state chart you can set breakpoints on state events or transitions. After a state chart breakpoint is hit, the
simulation pauses, allowing you to single step through the state chart.

You can also add Watch windows to view variables. When you do so, the active state is highlighted.

Monitoring register values

Use the Extern Read block with the datatype set to Hardware Register to display register values on the target. These
values can be sent over the Hotlink and displayed using plot or display blocks.

Recording event statistics

You can record the number of times a compound block is executed in a simulation or target application by creating an
iteration counter in the compounds and sending the counter value back over the HotLink. An example of an iteration
counter is shown below.

7 [¢—1@bd 16

1t 16 .16.16 iterationCounter —

Execution timing

Knowing the level of target CPU utilization for each conditionally executed subsystem is extremely important in embedded
applications. Typically, values in the 70% range are considered acceptable. Applications that consume more are prone to
over framing, a situation where not all the control functions are fully executed and completed in the sample time allotted
for the controller.

2022.1 Embed 61

Automatically Generating Executable Code

CPU utilization is measured at the system level or within any conditionally executed compound block:

e System Level CPU Utilization: The targetinterface block lets you create an output connector that displays the
percent CPU utilization on the target while the target application is running. In addition, you can place Get CPU
Usage blocks within any conditionally executed compound block to output the CPU usage for that specific block.

e Compound block level CPU Utilization: You can add a Get CPU Usage block within any compound block to
measure the CPU utilization of that block only. The measured utilization can be captured in a Monitor Buffer
Read block or directly fed out of the compound block for display or plotting.

e Over Framing Detection: By activating Check for Performance Issues during code generation, Embed displays
a warning message if the target is not able to execute at its commanded sample rate.

Examining waveforms

Data can be captured on the target and sent to a user-specified buffer by using Monitor Buffer Read and Write blocks.
Acquisition is triggered using any Boolean operation to start the capture. Once the buffer is full, the data is sent to
simulation model on the PC and captured by a Monitor Buffer Read block connected to a plot block in which you can
examine any waveform in the diagram.

Checking for performance degradation

By activating the Check for Performance Issues during code generation, Embed analyzes the diagram for issues that can
cause performance degradation in the embedded application. Embed checks for divides, matrix usage, floating point
transfer functions, continuous transfer functions, numerical integrations, and more. It then provides suggestions on how to
improve performance when these types of issues are detected.

Code Generation Properties

ResultFile: | blink280x.c

Result Dir; C:\altair\Embed 20200

Target: Faa0x .
Subtarget (setin target config): F2808

Chedk for Performance Issues:

Optimization Level:

Ize selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code [] add Stack Chedk Code
[]call from Foreign RTOS/User App On-Chip BAM Only
[]indude Blodk Nesting as Comment Target ELASH

[]Enable Preemption in Main Ciagram
Stack size: Heap size:

Perindic Function Mame: cgMain

Code Gen View... Compile... Download. ..

Measuring stack and heap usage

62 2022.1 Embed

Automatically Generating Executable Code

Stack memory is used as scratch space for each thread of execution. Heap memory is used only in rare cases because
most memory usage is determined at link time. Heap is used for certain matrix operations (for example, the inverse
function) and is tracked so you can be updated continuously on heap usage. To examine the stack and heap:

1. Inthe Tools > Code Gen dialog box, activate Add Stack Check Code and click Compile.
2. If you view the generated code, the GET_MAX_STACK_USED(); function appears in the code.

static CGDOUBLE _delayoutBuf2e=0;
CGDOUBLE _vy_16;
CGDOUBLE t©32;
CGDOUBLE t27;
CGDOUBLE _uref_16;
TIMERZTCR = TIMERZTCR;

_y_l6 = sim-»>1n51g5[1]->u. Double;

t32 = ({ _y_16 +({- _delayoutBuf26))%222.);
t27 = ((0.0001% t32)+ _delayoutBuf2a);
_uref_16 = sim-=insigs[0]-=u.Double;

sim-=out5igs[0].u.Double = (({ _uref_16 +(- _y_16))

_delayoutBuf2e = t27;
3. Download and run the application on the target.

Allow the target to execute with ample runtime to exercise all significant
functions.

4. Under Embedded > your-device > Target Interface, choose Get Target Stack and Heap to display the
maximum stack and heap usage encountered during target execution.

Controlling code placement

Code can be placed in specific memory segments using the Extern Definition block. This block allows you to declare data
and associate it with a specific memory segment using C syntax (compiler dependent).

A common application is allocating DMA RAM. Typically, not all RAM on a target device is capable of DMA, so itis
important to attach your DMA data elements to DMA- capable RAM segments. The attachment of a data item to a RAM
segment is usually done via #pragma.

A second application is the need to copy Flash code to RAM to improve performance. When the code resides in a
compound block, selecting the Copy Flash Function to RAM parameter of the compound block moves the compound
block code to RAM prior to execution. The option is enabled when the compound block is configured for Enabled
Execution, Local Time Step, or Execute on Interrupt.

Profile matching

Profile matching is one of the most common methods of model validation. The response profiles produced by applying
identical command signals to both the simulation model and the target application are compared. Any differences indicate
the need for further debugging.

Target application response profiles collected from the target are transmitted to the host over the Hotlink interface and
compared with the simulation model response profiles. Embed provides two data collection methods:

e Direct: Variable values are transmitted from the target to the host in real time as they are calculated. Overall
communication bandwidth is limited to approximately 200Hz.

o Buffered: The Embed “Monitor Buffer” records variable values at the target execution rate (this can be 10kHz or
greater), stores them in a configurable array, and strobes the array to the host where the data can be saved or
plotted.

2022.1 Embed 63

Automatically Generating Executable Code

Debugging code on Arduino, ARM Cortex M3, Linux, C2000, and STM32
targets

When the controller algorithm is running on a target and the plant model is running on the host computer, you use a
debug diagram to dynamically adjust parameters in the executable code and to give real-time feedback for the controller
responses on the host.

Creating a debug diagram

1. Open the source diagram containing the compound block that describes the controller algorithm.

2. Choose File > Save As and save the diagram with the same name but with a -d suffix. For example, if your source
diagram is named BlinkLED.vsm, save your debug diagram as BlinkLED-d.vsm.

You are now working in your debug diagram.
3. Choose Embedded > your-target-device > your-target-device Config.
4. Do one of the following:

e For C2000, ARM Cortex M3, and STM32: Under JTAG Connection, select the JTAG connector and click OK,
or press ENTER.

e For Arduino: Under Virtual Comport, select the serial port number for your Arduino and click OK, or press
ENTER.

e For Linux AMD64 and Raspberry Pi: Choose the IP address of the target.
5. Choose System > System Properties and under the Range tab, do the following:
e Set Time Step to 0.01.

e Activate Run in Real-time, Auto Restart, and Retain State. Since the JTAG bandwidth is around 100-200Hz,
there is little sense in running the diagram any faster, even though the target may be running much faster.

e Click OK, or press ENTER.

6. From Embedded > your-target-device, insert a Target Interface block. The Target Interface block is automatically
configured with the last OUT or ELF file created for the diagram, along with the same number of inputs and outputs
the compound block had when you compiled it. An additional output pin to monitor %CPU usage is created.

7. Wire the Target Interface block into the diagram in the same way that the compound block containing the simulated
controller is wired.

8. Connect a display block to the %CPU usage output pin on the Target Interface block.
9. Choose File > Save.

10. If the Target Interface block is not automatically configured, right-click the block and set the OUT or ELF file path
and input and output pin counts.

JTAG connectors

For C2000, ARM Cortex M3, MSP430, and STM32 devices, Embed provides a built-in USB-based JTAG communication
HotLink that lets you interactively control the target from the host, as well as collect data in real time from the target. The
supported JTAG connectors are shown in the table below.

JTAG connector Device

Blackhawk USB2000 C2000, ARM Cortex M3

64 2022.1 Embed

Automatically Generating Executable Code

F280x eZdsp USB C2000

F283x eZdsp USB C2000

F2812 eZdsp USB C2000

Signum JTAGJet C2000, ARM Cortex M3
Spectrum Digital XDS510 PP C2000

Spectrum Digital XDS510 USB C2000, ARM Cortex M3
Stellaris In-Circuit Debug Interface ARM Cortex M3

TX XDS100v1 USB C2000, ARM Cortex M3
TI XDS100v2 USB C2000, ARM Cortex M3
TI XDS100v3 USB C2000, ARM Cortex M3
TI XDS110 USB C2000, ARM Cortex M3
T1 XDS200 USB C2000, ARM Cortex M3
T1 XDS100v2-M3 USB C2000, ARM Cortex M3
usB MSP430

USB ST-LINK/V1+V2+V3 STM32

Simulating with a debug diagram

Normally during development, you will have both the source and debug diagrams open in the Embed work space. You
then iterate through the debug cycle by making a change to the source diagram, compiling, then switching to the debug
diagram and running the test. Based on test results you go back and modify the source diagram, and so on until you are
satisfied with the performance of the code on the target.

When you simulate the diagram, the Target Interface block downloads your generated code to the target and
communicates with the target via the JTAG HotLink to send values to your target algorithm and receive them back,
allowing you to make interactive changes in your algorithm and interactively plot results in Embed.

1. Open the debug diagram containing the Target Interface block.

2. Connect your host computer to the target device with a standard USB cable to establish a HotLink connection.

3. Choose Simulate > Go, or press * in the toolbar.

Using serial monitor to debug code on Arduino targets

You can also use the serial monitor in the Arduino IDE to debug code on an Arduino target. There is ample information on
using the serial monitor on the internet. This section uses a simple example to demonstrate how to use the Arduino IDE
serial monitor to debug a faulty diagram. The diagram is supposed to generate code that, when loaded onto an Arduino
Uno R3, causes the built-in LED to blink when a push-button sensor attached to the Uno is pressed.

Configure the hardware and the diagram

2022.1 Embed 65

Automatically Generating Executable Code

5. Set up the hardware by attaching the pushbutton sensor to the GRND, 3.3V and digital input 2 pins on the Arduino
Uno R3.

Attach the Uno to your computer using a USB cable.
Start Embed and click File > New.

Save the diagram as BlinkLEDwithPushButton.vsm.

© ® N 2

Add an Arduino Config block, Digital Input for Arduino block, and Digital Output for Arduino block to your
diagram.

[Arduino Config: Uno@16MHz |

[Arduino-PD2 (Arduino pin2) > D Arduino-PB0 (Arduino ping) |

10. Wire the Digital Input for Arduino block into the Digital Output for Arduino block and make sure:
e The Arduino Config is set to the proper COMM port.
e The Digital Input for Arduino is set to channel 2 and port PD.
e The Digital Output for Arduino is setto channel 2 and port PB.

11. Generate code to run on the Arduino.

12. After the code has been downloaded to the Arduino Uno R3, click the pushbutton on the sensor. The built-in LED
fails to respond when pushing the sensor button.

The next several sections step you through how to debug the code using the Arduino serial monitor.

66 2022.1 Embed

Automatically Generating Executable Code

Confirm that data can be printed to the serial monitor

1. Goto C:\Program Files (x86) > Arduino and click Arduino.exe.

2. Return to the BlinkLEDwithPushButton diagram.

3. Check if data can be printed to the serial monitor by doing the following:

a. Add an Extern Function block to the diagram and call the functions Serial.begin(9600); Serial.printin(“test”).

[Arduino Config: Uno@16MHz |

[Arduino-PD2 (Arduino pin2) p—————»{ Arduino-PB2 (Arduino pin10)]

b. Encapsulate the Extern Function block in a compound block named Serial Debug and activate Enabled

Execution.

.
External Function Call Properties

/—’4

Function Name: ' 5eia) begin(9600)
Serial. printin(“"test™|

Use '$n" to reference pin n: i.e. foo($1,$2)

Input Pins:

Return Value Type

[¥] Do not declare function

[7] Has retum value

Data Type: char
Radix Point: | 0 Word Size: | [
[0K J [Cancel] [Help

l

2022.1 Embed

67

Automatically Generating Executable Code

[Arduino Config: Uno@16MHz |

»
¥ ° Compound Prqpertiel M
Compound Name
Serial Debug -
Type Ctd+ENTER to enter a new line
Protection Appearance
[JLocked [T|ReadOnly []Use Btmap |Select Image...
Password: [] Set Color -
Arduino-PD2 (Arduino pin2) Arduino-PB2 (Arduino pin10
Hide in Display Mode [~ Do not Snap to Grid Locally

Create Dialog from contained Dialog Constants

| Create buttons for contained compound dialogs
V| Enabled Execution

Copy Hash Function to RAM

Local Time Step: ‘ 1 —\
[] Codegen as Background Thread

| Execute on Intemupt: [Select. |

Use Local Bounds: Start: ‘0

e End: lAD

|| Retain State B a

[Use Implicit Solver: \ Setup Solver...
Cortained Block Count: [1
Contained Computational Blocks: \

[omea] |

g

c. Wire avariable block set to $firstPass into the Serial Debug block.

4. Generate code to run on the Arduino.

5. Switch to the Arduino IDE and click on Tools > Serial Monitor.

The monitor window displays the word test, which shows that data communication is working.

68 2022.1 Embed

Automatically Generating Executable Code

COM6 (Arduino/GemW_

{
test 3
{
i
' 4
{.
L
4
4
Autoscroll h

6. Close the serial monitor.

Confirm that the pushbutton is working

1. Wire a Boolean not block into the diagram:

[Arduino-PD2 (Arduino pin2) B

> Arduino-PB2 (Arduino pin10) |

2. Add an Extern Function block that calls the function Serial.printin(“ON”).

3. Encapsulate the Extern Function block in a compound block named Button On Test and activate Enabled
Execution.

4. Wire the Boolean not to the Button On Test block.

2022.1 Embed 69

Automatically Generating Executable Code

[Arduino Config: Uno@16MHz |

> SfirstPass [p (L Serial Debug

[Arduino-PD2 (Arduino pin2) P——p{ not ————»{ Arduino-PB2 (Arduino pin10) |

L Button On Test |

5. Generate code to run on the Arduino.

6. Switch to the Arduino IDE and click on Tools > Serial Monitor.
7. Press the pushbutton on the sensor.

The word ON is displayed in the serial monitor after each press, which confirms that the pushbutton is working correctly.

COMB (Arduino/Genuino

test
ON
CN
CN

!
:

Autoscroll

8. Close the serial monitor.

Check diagram parameters
1. Right-click on each block and check that the parameter values are set correctly.

2. The Channel parameter for the Digital Output for Arduino block is incorrectly set to 2. Set it to 5, which
corresponds to Uno Pin 13, the built-in LED.

70 2022.1 Embed

Automatically Generating Executable Code

3. Generate code to run on the Arduino.

4. Press the pushbutton on the sensor.

The built-in LED now blinks each time you press the pushbutton.
Debugging real-time analog waveforms using the Arduino serial port

Two diagrams are included with Embed that show how to use the Arduino serial port for debugging real-time analog
waveforms. The diagrams are located under Examples > Embedded > Arduino > Application.

e genPlotData-Uno: Sends three channels of packetized waveform data to the serial port

e serialPlot: Reads up to eight channels of packetized waveform data from the serial port. It uses the Serial Read
(under Blocks > Real Time) to read and parse the data into a vector, then convert the vector to scalar and plot
the data in real time.

To see how to use these diagrams for debugging:

1. Attach your Arduino to your computer.
Open the genPlotData-Uno diagram.
Make sure you select the proper COMM port in the Arduino Config block.

Compile and flash genPlotData-Uno to the Arduino target.

Open the serialPlot diagram.

Right-click the Serial Read block and confirm the COMM port is properly set.

N oo a > w N

Run the diagram.

You can change the rate or end time of each run using the Simulate > System Properties command.

Running generated code on HIL hardware

The Target Interface block downloads OUT or ELF files generated with the Use selected compound edge pins for data
exchange parameter at the start of the simulation. The Target Interface block maintains connection to the target and
sends and receives data in real time. The data is sent over JTAG, UART or Ethernet depending on the target. The
diagram containing the Target Interface block is typically set to run in real-time, with auto restart and retain state set so
that debug sessions run until the stop button is clicked.

To perform HIL, you use the Target Interface block in a debug diagram. Place the blocks you wish to debug (typically your
controller subsystem) into a single compound block and compile it to an OUT or ELF file. The code generator
automatically generates code for the HIL data exchange.

To run the generated OUT or ELF file

e Replace the compound block in your diagram with the Target Interface block. When you place a target Interface block
in the diagram, it will automatically be set up with the path to the generated OUT or ELF file.

Integrating handwritten code with generated code

There are two ways to integrate handwritten code with Embed-generated code:

e Make Callable from User App option

2022.1 Embed 71

Automatically Generating Executable Code

e Use the Extern Read and Extern Write blocks
e Use the Extern Definition and Extern Function blocks

Regardless of the method you use, to run independently but communicate with Embed, use the Extern Read and Extern
Write blocks.

Calling the generated code from a user application

You supply the operating environment and call Embed-generated code as a task using the Call from Foreign RTOS/User
App parameter in the Code Generation dialog box. This assumes that you are handling timers and interrupts and will call
the Embed function at the designed control interrupt rate. You can include the generated C file in a Code Composer
project.

Using Extern Read and Extern Write blocks to merge your code

Embed has Extern Read, Extern Write and Extern Function blocks to read and write external variables, as well as to call
external functions.

To merge your code

1. Use Extern Read and Extern Write blocks to read and write external variables.

2. Use Extern Function blocks to call your functions. You can specify parameters as input pins to the block and access
the function result as an output pin on the block.

3. Add your OBJ file to the targetCL.BAT file (for example, F280xcl.bat) found in the \<install-path>\CG directory. To add
your OBJ file to the BAT file, open the BAT file in Notepad and type the path to your OBJ after “set USER_OBJS="in
the first line of the file. If you have more than one file, separate them with commas.

To run your initialization code, put the code in a function called userStartup(). This function is called by Embed-generated
code at boot time. In this function, you can install your interrupt handler and perform any other initialization task.

Using Extern Definition and Extern Function blocks to add a C function to
your diagram

Embed lets you easily convert a C function into an Embed block and add it to the User Block menu. To converta C
function, you use the Extern Definition and Extern Function blocks. To add the newly-created Embed block to the User
Block menu, you include it in the Addons list under Edit > Preferences. For step-by-step instructions, watch this online
video.

Generating code from custom blocks

You can write a custom block in Embed using the Embed add-on API. The Embed install supplies a Microsoft Visual C
wizard that will create a project for you. This lets you run pure simulations on the PC and when code generation is
requested, your code is emitted in the generated code; Embed sends a message to your DLL at code generation time
requesting a code generation string if the standard call is not sufficient. The code generation string may contain %n
references that will be expanded by the code generator to the expressions that represent the values flowing into the nt
connector.

72 2022.1 Embed

https://www.youtube.com/watch?v=0-Ele4Tl7gA
https://www.youtube.com/watch?v=0-Ele4Tl7gA

Automatically Generating Executable Code

Event logging

Embed provides a simple function for logging events. You are encouraged to write your own function to send events to an
embedded display device of your choice or send them to a log file. The source code for the supplied function is provided
below:

#include <stdio.h>
#include <stdlib.h>
#include "vsuser.h"

void vsmLogEvent (int eventType, const char *eventName, const char *eventClass)
{

const char *messageType="?2?";

switch (eventType) {

case tvsmEventMessage:

messageType = "Info";
break;

case tvsmEventWarning:
messageType = "Warning";
break;

case tvsmEventError:
messageType = "Error";
break;

}

printf ("%s\t", messageType);

if (!eventClass)

eventClass = "Unclassified";

printf("%s: %$s\n", eventClass, eventName) ;

}

2022.1 Embed 73

Using the Target Support Blocks
and Commands

Using the target support blocks
Embed provides on-chip peripheral blocks to allow you to program the following devices and boards:
e AMD64
e Arduino: Leonardo, Mega2560, Uno
e Raspberry Pi: Zero, Zero W, 1A+, 1B+, 2B, 3A+, 3B, 3B+, 4B
e STMicroelectronics: STM32 FOx, F3x, F4x, F7x, GOx, G4x, H7x, L4x

e Texas Instruments: ARM Cortex M3, C2000 (C2407, Delfino, F280x, F281x, Piccolo), MSP430

ADC10/12

Target Category: MSP430

Description: The MSP430 comes with either an ADC 10-bit precision or ADC 12-bit precision module. The ADC10/12
block allows you to acquire analog data from an MSP430 and convert it into digital data. When you insert an ADC10/12
block into your diagram, it automatically assumes either 10- or 12-bit precision based on the CPU subtype you selected in
the dialog box for MSP430 Config.

ADCT0 Channel Properties

Chan: |0

Wref:

Corcel el

Channel: Indicates a channel number.

Vref: Indicates the reference voltage for the unit. If you have selected a CPU subtype with ADC 10-bit precision on the
MSP430, the Vref text box is dimmed.

2022.1 Embed 75

Using the Target Support Blocks and Commands

Analog Comparator DAC

There are different dialog boxes for the Analog Comparator DAC block, depending on your Texas Instruments device.
Older devices, like the F2808 do not have a comparator subsystem. Newer devices, like the F280049 have the
subsystem.

To compare voltages on an MSP430, use the Comparator block.

Analog Comparator DAC - No Comparator Subsystem
Target Category: Delfino, F280x, Piccolo
Target Sub-Category: DAC

Description: The Analog Comparator DAC block lets you set up the on-chip comparator that compares an on-chip
voltage reference to an external pin.

The Analog Comparator DAC block lets you set the value of the DAC on the comparator unit. It takes an input value
between 0 and 1in FX6.16 format. The voltage produced by the Analog Comparator DAC is the input value * VRefDac.

Analog Comparator DAC Properties

Unit; 1 - [Invert Output

[] Put COMP=OUT on block pin
Input & |f-‘-.D CINA2
Irput B: ADCINEZ ~
Output Synchronization: Mone e

[] Drive DAL with Famp
Fhd S HCT

i Ping
COMPIOUT: Uruzed -

] Cancel Help

Drive DAC with Ramp: If input B is selected to be internal DAC, then you can change Drive DAC with ramp.

Input A: Indicates the voltage to be compared on input A. The voltage must be the same as what is presented on
ADCINA2.

Input B: Indicates the voltage to be compared on input B. The voltage must be the same as what is presented on internal
DAC.

Invert Output: Controls whether the output is inverted.
Mux Pins: Selects the pin that a given function is on.

Output Synchronization: Indicates how often the compactor results are updated and how long the comparator results
must be consistent before a change occurs.

Put COMPxOUT on block pin: Indicates that the results of the comparator can be put on a pin.
Ramp Sync Source: Indicates when the ramp goes back to zero for synchronization.

Unit: Indicates the comparator unit.

76 2022.1 Embed

Using the Target Support Blocks and Commands

Analog Comparator DAC - Comparator Subsystem (CMPSS)
Target Category: Delfino, Piccolo
Target Sub-Category: DAC

Description: The Analog Comparator DAC block lets you set up the on-chip comparator that compares an on-chip
voltage reference to an external pin.

The Analog Comparator DAC block lets you set the value of the DAC on the comparator unit. It takes an input value
between 0 and 1 in FX6.16 format. The voltage produced by the Analog Comparator DAC is the input value * VRefDac.

Analog Comparator DAC Properties

|Jrit; 1 v Sunc Source: P SYMCT Husteresiz; |0 w
DACHYALA Load On: | SYSCLE v Wit WDDA

COMPH
COMPH+ AXBE « | Filter Samp “Win: 1 ~ CTRIPOUTH: | Asynchionaus
COMPH- A3 « | Filter Threshald: 1 ~ CTRIFH: ferETTEE
[T invert Output Filter CLF. Driv: 0 -
COMPL
COMPL+ AZ/BE ~ | Filer Samp'win: |1 hd CTRIPOUTL: | Asynchionous
COMPL- a3 + | Filter Threshald: 19 v CTRIFL: Aspnchronous
(] Invert Dutput Filter CLE, Diiv: 0 w

LCancel Help

COMPH

COMPH+: See Texas Instruments documentation for detailed information on this parameter.
COMPPH-: See Texas Instruments documentation for detailed information on this parameter.
CTRIPH: See Texas Instruments documentation for detailed information on this parameter.
CTRIPOUTH: See Texas Instruments documentation for detailed information on this parameter.
Filter Samp Wire: See Texas Instruments documentation for detailed information on this parameter.
Filter Threshold: See Texas Instruments documentation for detailed information on this parameter.
Filter CLK Div: See Texas Instruments documentation for detailed information on this parameter.

Invert Output: Controls whether the output is inverted.
COMPL

COMPL+: See Texas Instruments documentation for detailed information on this parameter.
COMPL-: See Texas Instruments documentation for detailed information on this parameter.
CTRIPL: See Texas Instruments documentation for detailed information on this parameter.
CTRIPOUTL: See Texas Instruments documentation for detailed information on this parameter.
Filter Samp Win: See Texas Instruments documentation for detailed information on this parameter.
Filter Threshold: See Texas Instruments documentation for detailed information on this parameter.
Filter CLK Div: See Texas Instruments documentation for detailed information on this parameter.

Invert Output: Controls whether the output is inverted.

2022.1 Embed 7

Using the Target Support Blocks and Commands

DACxVALA Load On: See Texas Instruments documentation for detailed information on this parameter.
Hysteresis: Indicates the lag introduced to the system.

Sync Source: See Texas Instruments documentation for detailed information on this parameter.

Unit: Indicates the comparator unit.

Vref: See Texas Instruments documentation for detailed information on this parameter.

Analog In
Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Generic MCU, MSP430, Piccolo, STM32
Target Sub-Category: Sim

Description: The Analog In block receives simulated analog data from the diagram during a simulation. The Analog Input
block produces the data sent to the Analog In block.

Select F28335 Simulated Analog Channel >
Simulated it 2 w
Simulated Analog Channel] e

Simulated Analog Channel: Indicates the analog channel to be simulated. Click here for Arduino pin mapping.

Simulated Unit: Indicates the unit. This parameter is available for Texas Instruments dual core, F280025, and F280049
targets.

Unit: Indicates the unit. This parameter is available for STM32 targets.

Analog Input
Analog Input for Arduino, C2407, Delfino, F280x, F281X, Piccolo

Target Category: Arduino, C2407, Delfino, F280x, F281X, Piccolo
Target Sub-Category: ADC

Description: The Analog Input block receives analog data from the ADC peripheral on the embedded target. During
simulation, Analog Input produces the data supplied by the corresponding Analog In block.

Note that the block output type is scaled integer and holds fractional values between 0 and 1, where 1 corresponds to a
full-scale ADC result regardless of the bits in the ADC converter.

78 2022.1 Embed

Using the Target Support Blocks and Commands

F280K F280049 ADC Input Properties >
Charnel ADCARESULTO e

Title: | |

Cancel Help

Channel: Indicates the channel number. Click here for Arduino pin mapping.

Title: Indicates the channel title.

Unit: Indicates the unit number. This parameter is not available for Arduino, C2407, and F281X targets.

Analog Input for STM32
Target Category: STM32
Target Sub-Category: ADC

Description: The Analog Input block receives analog data from the ADC peripheral on the embedded target. During
simulation, Analog Input produces the data supplied by the corresponding Analog In block.

Note that the block output type is scaled integer and holds fractional values between 0 and 1, where 1 corresponds to a
full-scale ADC result regardless of the bits in the ADC converter.

ADC Result Select =
ADC Uit 1
Sequencer: Fegular »
Rezult: 1 = | GPIO: PAD

Cancel Help

ADC Unit: Indicates the unit number.

Result: Indicates the index into the result vector. The input channel is displayed to the right of the dropdown. To change
the input channel for a sequencer result, use the STM32 ADC Config block.

Sequencer: Indicates a regular or injected mode sequencer. In injected mode, an ADC conversion can be injected —
using an external trigger — during the conversion of regular channels. In motor control applications, this is used to delay
conversion until after completion of an event — such as transistor switching — so that conversion noise is reduced. An
injected conversion has higher priority than a regular conversion and thus interrupts regular conversions.

2022.1 Embed 79

CAN Receive

Using the Target Support Blocks and Commands

Target Category: C2407, Cortex M3, Delfino, F280x, F281X, Piccolo, STM32

Target Sub-Category: CAN

Description: The CAN Receive block implements a controller area network version 2.0. This block generates code to
receive up to four 2-byte integers from a CAN bus. Use CAN Config to configure the network.

CAM Receive Properties

[Receive extended frames
[] 5et addrezs dvnamically

[] Put Received CAN 1D on output pin
[rata Pin Configuration

Pir: 1 ¥ Type

Byte offzet into CAM packet: | 0

ok, Cancel

SCALED_INT
Fadix Point; | 4 e YWwhord Size:

S

CaM Device: &, e
D ata Pins: 4 e
Mailbox Murnber: 1] v
Message ID(11bits)k | 000

(uee 0o e maskingy L

Mux Pin: GFIO&

16

Help

S

CAN Device: Indicates the CAN device.

Data Pins: Controls the number of 2-byte integers to be received.

Data Pin Configuration

Byte Offset into CAN Package: Specifies the byte offset into the 8-byte packet. Offset 0 starts with the first element

in the packet.

Pin: Indicates the pin to be configured.

Radix Point: Sets the binary point.

Type: Specifics the data type. Scaled_Int is 16- or 32-bit, depending on word size.

Word Size: Specifies the word size in bits.

Mailbox Number: Defines the mailbox to be used.

Masking Register: Represents a hexadecimal number used to mask off a portion of the identifier that would normally be
used to match a CAN message identifier. For STM32 targets, the masking register is optional. In this case, to use it, you

must activate the Use Mask parameter.

Message ID: Indicates the CAN message ID used to specify the network address.

Mux Pin: Selects the pin which a given function is on.

80

2022.1 Embed

Using the Target Support Blocks and Commands

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pinl6 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

Number of Outputs: Controls the number of 2-byte integers to be received.

Receive extended frames: When activated, uses CAN 2.0 29-bit identifiers. When Receive extended frames is not
activated, it uses 11-bit identifiers.

Set address dynamically: Changes address from which to receive as the algorithm runs.

Use Mask: For STM32 targets, you must activate Use Mask in order to enter the masking value.

CAN Transmit
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, Piccolo, STM32
Target Sub-Category: CAN

Description: The CAN Transmit block implements a controller area network (CAN) version 2.0. This block generates
code to transmit up to four 2-byte integers from a CAN bus. Use CAN Config to configure the network.

CAM Transmit Properties
CAM Device: A ~
Data Pins 4 e
Butes in transfer; g e
M ailbo Mumber: 4 e
kezzage 1D 17 bits]: (=00
M P GPIO4
[]5end Extended Frames

[] Bemote Transmission Fequest

[] Ao nswer Mode

[] Enable Transmit Pin

[] 5et Address Dynamically

[]5et Data Length Dynamically
[ata Pin Configuration

Pir: 1 0 Type: SCALED_IMT b
Fadix Paint; | 4 - “word Size: |16 v
Byte offzet into CAMN packet: | 0 w

] 4 Cancel Help

Auto Answer Mode: Only for boxes 2 and 3.

2022.1 Embed 81

Using the Target Support Blocks and Commands

Data Pins: Controls the number of 2-byte integers to be transmitted.
Data Pin Configuration

Byte Offset into CAN Package: Specifies the byte offset into the 8-byte packet. Offset O starts with the first element
in the packet.

Pin: Indicates the pin to be configured.
Radix Point: Sets the binary point.
Type: Specifics the data type. Scaled_Int is 16- or 32-bit, depending on word size.
Word Size: Specifies the word size in bits.
CAN Device: Indicates the CAN device.

Enable Transmit Pin: Adds an input pin for the CAN address to which you want to transmit. This parameter must be
activated.

Mailbox Number: Represents a hexadecimal number used to mask off a portion of the identifier that would normally be
used to match a CAN message identifier.

Message ID: Indicates the CAN message ID used to specify the network address.
Mux Pin: Selects the pin which a given function is on.

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pin16 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

Number of Inputs: Controls the number of 2-byte integers to be transmitted.

Remote Transmission Request: Sends non-data packet to message ID. If the box at message ID is in auto answer
mode, it uses an immediate response.

Send Extended Frames: Allows use of 29-bit identifier.

Set address dynamically: Changes address to transmit to as the algorithm runs.

CAN Transmit Ready

Target Category: C2407, Cortex M3, Delfino, F280X, F281X, Piccolo, STM32
Target Sub-Category: CAN

Description: The CAN Transmit Ready block lets you know when the transmit function is available. Use CAN Config to
configure the network.

CAM Transmit Ready Properties

CAM Device: & e
Mailbox Mumber: 4 w
(] Cancel Help

CAN Device: Indicates the CAN device.

Mailbox Number: Defines the mailbox to be used.

82 2022.1 Embed

Comparator
Target Category: MSP430
Sub-Target Category: ADC

Using the Target Support Blocks and Commands

Description: The Comparator block compares two voltages. It supports precision slope analog-to-digital conversions,
supply voltage supervision, and monitoring of external analog signals. Features of the Comparator block include:

For more information on the Comparator block, see the MSPUM430.PDF file included with your software.

Inverting and non-inverting terminal input multiplexer
Software selectable RC-filter for the comparator output
Output provided to Timer_A capture input

Software control of the port input buffer

Interrupt capability

Selectable reference voltage generator

Comparator and reference generator can be powered down

To compare voltages on a Delfino, F280x, or Piccolo, see Analog Comparator DAC block.

Comparator Properties

Chiooze YHef Pin
¥ ()WFRefonCal

Woltage R eference: Esternal
[] Use On-chip BL filker
[Connect CA0 to P16
] Cornect CAl o P1.7

] Cancel

Help

Choose VRef Pin: Selects the voltage reference pin.

Connect CAO to P1.6: See the MSPUMA430.PDF file included with your software.

Connect CAlto P1.7: See the MSPUMA430.PDF file included with your software.

Use On-Chip RC filter: See the MSPUM430.PDF file included with your software.

Voltage Reference: See the MSPUM430.PDF file included with your software.

DAC

2022.1 Embed

83

DAC for Delfino, F280x, Piccolo

Target Category: Delfino, F280x, Piccolo

Description: The DAC block performs digital to analog conversions.

DAC Properties
[t Oukput Pir:
[]5yne Update

Sync Source:; PSR

Gain Mode: 1w

Yoltage Reference: VDACASSA v

Cancel Help

Using the Target Support Blocks and Commands

Gain Mode: Selects the output gain with respect to the reference voltage. This parameter is available only for the Texas

Instruments F28377.

Output Pin: Specifies the output pin.

Sync Source: Determines which PWM sync will cause the DAC block input to be presented on the hardware. This

parameter is available only for the Texas Instruments F28377.

Sync Update: Specifies the sync. This parameter is available only for the Texas Instruments F28377.

Unit: Specifies the unit.

Voltage Reference: Chooses the reference, voltage, and ground. This parameter is available only for the Texas

Instruments F28377.

84

2022.1 Embed

Using the Target Support Blocks and Commands

DAC for STM32
Target Category: STM32

Description: The DAC block performs digital to analog voltage conversions.

DAC Properties
|t ~
ouTi
Fir: Unuzed [Butfer Internal Connection
[Use Triggered Updates
Trigger: TimE TRGO R
[Add signak Naise ~ | Amplitude: | 2 bits ~
Sample Hold: Sample Ticks: 0O Hold Ticks: O Refresh Ticks: 0
outz
Fir: Unzed [Butfer Internal Connection
[JUsze Triggered Updates
Trigger; TimG TRGO I
[dd signal Hoize ~ Amplitude: | 2 bits v
Sample Hold: Sample Ticks: 0 Hald Ticks: 0 Refresh Ticks: 0
LCancel Help

Unit: Specifies the DAC to be controlled.
OouUT1

Pin: Specifies the metal pin on the STM32 device. You have these options:
e Buffer: When driving the metal pin, you can buffer the signal, which means the chip is supplying more power.
e Internal Connection: Lets you use the voltage internally for a comparator.
Use Trigger Updates: Activate this parameter to use a trigger to control when Embed updates the value on the pin.
Trigger: Specifies the signal that will trigger a conversion.

Add Signal: Lets you add noise or a triangular wave signal to the base DC value. This is a common technique for some
digital power control conversions.

Amplitude: Specifies how many bits of noise or triangular wave to add to the signal.

Sample Hold: Performs a sample and hold operation on the signal. This is a power conservation feature available on low-
power devices. You control the sample and hold in the following ways:

e Sample Ticks: Specifies the number of ticks to sample the initial signal.
e Hold Ticks: Specifies the number of ticks to hold the signal before a refresh.

e Refresh Ticks: Specifies the number of ticks from digital to analog. Typically, the value is much smaller than the
initial Sample Tick value.

ouT2

Pin: Specifies the metal pin on the STM32 device. You have these options:

¢ Buffer: When driving the metal pin, you can buffer the signal, which means the chip is supplying more power.

2022.1 Embed 85

Using the Target Support Blocks and Commands

e Internal Connection: Lets you use the voltage internally for a comparator.
Use Trigger Updates: Activate this parameter to use a trigger to control when Embed updates the value on the pin.
Trigger: Specifies the signal that will trigger a conversion.

Add Signal: Lets you add noise or a triangular wave signal to the base DC value. This is a common technique for some
digital power control conversions.

Amplitude: Specifies how many bits of noise or triangular wave to add to the signal.

Sample Hold: Performs a sample and hold operation on the signal. This is a power conservation feature available on low-
power devices. You control the sample and hold in the following ways:

e Sample Ticks: Specifies the number of ticks to sample the initial signal.
e Hold Ticks: Specifies the number of ticks to hold the signal before a refresh.

e Refresh Ticks: Specifies the number of ticks from digital to analog. Typically, the value is much smaller than the
initial Sample Tick value.

DAC12

Target Category: MSP430
Target Sub-Category: DAC

Description: The DAC12 block supports the MSP430 DAC12 peripheral, which performs 12-bit digital to analog
conversions. For background information on the DAC12, see the MSP430x4x-SLAUO56F.PDF file contained on your
installation disk.

DACT2 Properties
Char: 0 = (3 i 3 w
Power Level: | O, High £ output w
Load Select; DACTZ_sDAT WWirite W
R ezalutian: 12 bitz “w

[] Group with nest higher channel

0k, Cancel Help

Chan: Selects the DAC12 module to be used.
Gain: Selects the output gain with respect to the reference voltage.

Group with next higher channel: Allows you to group together multiple DAC12s with the DAC12GRP bit to synchronize
the update of each DAC12 output. Hardware ensures that all DAC12 modules in a group update simultaneously
independent of any interrupt or nonmaskable interrupt (NMI) event.

Load Select: Select the trigger for updating the DAC12 voltage output.
Power Level: Select the power level. The more power you use, the faster the DAC12 module responds.

Resolution: Selects 8-bit or 12-bit voltage output resolution.

86 2022.1 Embed

Using the Target Support Blocks and Commands

Digital In
Target Category: Arduino, CortexM3, MSP430
Target Sub-Category: Sim

Description: The values presented to the input of the Digital In block will appear on the output of the actual Digital Input
block during a simulation.

Arduine Uneo Simulated Digital In Properties -

Channel; PA D1
Offset: 0 Bit Width:

Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Specifies the channel. Click here for Arduino pin mapping
Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register. Click here for Arduino pin mapping.

Digital Input
Digital Input for Cortex M3, MSP430

Target Category: Cortex M3, MSP430
Target Sub-Category: Digital I/0
Description: The Digital Input block receives digital data.

The Digital Input block is useful for hardware-in-the-loop simulation.

CortexM3 TMAC123AEE Digital Input Properties >

Part: A s Offset |00 Bit Wwidth: | 1 s

Fir Function: GRIO_PIMN_TYFE_STD ~
Pull up/dawn current: 2ma W
Title: |

Cancel Help

Bit Width: Specifies the bit width.

2022.1 Embed 87

Using the Target Support Blocks and Commands

Offset: Specifies the offset.
Pin Function: Specifies the pin function.
Port: Specifies the port.

Pull up/down current: Lets you specify the pin draw current in ON or OFF mode. This parameter is typically used for
communication protocols, like 12C. This parameter is available only for the Cortex M3 target.

Title: Indicates the channel title.

Digital Input for Arduino
Target Category: Arduino
Target Sub-Category: Digital /0

Description: The Digital Input block receives digital data.

Arduine Une Digital Input Properties x

Channel: PB 1
0 Bit Width:
Part Uno Pin &

[] Enable pull-up resistar

Tie: |

Cancel Help

Bit Width: Specifies the bit width.

Channel: Indicates the channel number. Click here for Arduino pin mapping.
Enable pull-up resistor: Enables the pull-up resistor on the input pin to 3.3V.
Offset: Specifies the offset.

Port: Specifies the port. Click here for Arduino pin mapping.

Title: Indicates the channel title.

Digital Out
Target Category: Arduino, Cortex M3, MSP430
Target Sub-Category: Sim

Description: The input values of the actual Digital Output block will appear on the output of the Digital Out block during a
simulation.

88 2022.1 Embed

Arduino Uneo Simulated Digital Out Properties >

Channel; PA D1

Offset: 0 Bit Width: w

Cance b

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Specifies the channel. Click here for Arduino pin mapping.
Offset: Specifies the offset into the digital port register.

Pin Function: Specifies the pin function.

Using the Target Support Blocks and Commands

Port: Specifies the digital register. Click here for Arduino pin mapping.

Digital Output
Digital Output for Cortex M3, MSP430

Target Category: Cortex M3, MSP430
Target Sub-Category: Digital I/0
Description: The Digital Output block writes digital data.

The Digital Output block is useful for hardware-in-the-loop simulation.

CortexM3 TMAC123AE6 Digital Cutput Properties %

Part: A s Offset |00 Bit Wwidth: | 1 s

Fir Function: GRIO_PIMN_TYFE_STD ~
Pull up/dawn current: 2ma W
Title: |

Cancel Help

Bit Width: Specifies the bit width.

Offset: Specifies the offset.
Pin Function: Specifies the pin function.

Port: Specifies the port.

2022.1 Embed

89

Using the Target Support Blocks and Commands

Pull up/down current: Lets you specify the pin draw current in ON or OFF mode. This parameter is typically used for

communication protocols, like I12C. This parameter is available only for the Cortex M3 target.

Title: Indicates the channel title.

Digital Output for Arduino
Target Category: Arduino
Target Sub-Category: Digital /0

Description: The Digital Output block writes digital data.

Arduing Une Digital Qutput Properties >

Channel: FE 01
0 Bit width:
Port, Uno Pin &

Tile: |

Cancel Help

Bit Width: Specifies the bit width.

Channel: Indicates the channel number. Click here for Arduino pin mapping.

Port: Specifies the port. Click here for Arduino pin mapping.

Title: Indicates the channel title.

DMA Enable

Targets: Delfino, F281X, Piccolo, STM32
Target Sub-Category: DMA

Description: The DMA Enable block lets you turn Direct Memory Access (DMA) on and off. DMA Enable writes or reads
data to memory automatically while the CPU is performing other tasks. Use DMA Config to configure the DMA.

Select DMA Channel >

Dk Channel TIk1 W

Cancel Help

DMA Channel: Specifies the channel.

90

2022.1 Embed

Using the Target Support Blocks and Commands

eCAP

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: Capture

Description: The eCAP block lets you configure the enhanced capture peripheral. Input to the eCAP block must have
well-defined logic edge transitions to trigger an event. The eCAP unit will record time between events. Up to four
sequential event intervals can be tracked.

You can choose the maximum number of events to track. To track both the on time and off time of a PWM signal, set Max
Events to 2, Event 1 to Trigger on Falling Edge, and Event 2 to Trigger on Rising Edge. Then activate the corresponding
Reset Counter on Capture. With this setup, event pin 1 will produce PWM on time, and event 2 pin will produce PWM off
time.

Additional information:

e How to capture a PWM signal with eCAP block

e Texas Instruments SPRU807-eCAP document

280 eCap Properties

Capture Unit: 1w Input Prescale: | Mone e

baw Events: 1w | MusPinc GRIOS —
Ewent1: | tigger ohrizing edge [Rieset Counter on Capture
EventZ bigger onrising edge ~ | Reset Counter on Capture
Ewvent 3. | trigger on rising edge [] Reset Counter on Capture
Event4: | tigger on rising edge ~ [Reset Courter on Capture

ak Cancel Help

Capture Unit: Specifies the unit to be configured.

Event1...Event4: Indicates the four independent edge polarity (rising edge/falling edge) selections, one for each capture
event.

Input Prescale: Indicates the amount of prescaling.
Max Events: Indicates the maximum number of capture events to be tracked.
Mux Pin: Selects which pin a given function is on.

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pinl6 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

Reset Counter on Capture: Resets the counter for the specified event.

eCap PWM

Target Category: Delfino, F280x, Piccolo

2022.1 Embed 91

https://community.altair.com/community?id=community_question&sys_id=19119b001b449110c4dfdbd9dc4bcb04
http://www.ti.com/lit/ug/spru807b/spru807b.pdf

Using the Target Support Blocks and Commands

Target Sub-Category: Capture
Description: The eCap PWM block takes the ecapture unit and configures it as a PWM.

Additional information: Texas Instruments SPRU791A document.

280 eCap PWM Properties

Capture Unit: 1w Sync-Out: Suncn w

Period: | 10000 |

[] Change Phaze Dynamically
CTRPHS [phasel: | 0 |

Folarity: Active High e
ML Pin GRIOS e
ok LCancel Help

Capture Unit: Specifies the unit to be configured.
Change Phase Dynamically: Changes the phase dynamically.

CTRPHS (phase): The phase register is loaded into the counter register when a synchronization pulse is received from
the prior unit. The phase register can be continuously updated if desired.

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pin16 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

Mux Pin: Selects which pin a certain function is on.

Period: Specifies the number of cycles (counter increments) of the board’s system clock to reach the end of its period.
The carrier frequency of the PWM signal is determined as follows:

(System-Clock-Frequency)/(Timer-Frequency) = Carrier-Frequency
For example, 150MHz/150 = 1MHz.
Polarity: Controls the active high and active low.

Sync-Out: Each eCap PWM block is potentially linked to the next highest one. The link is via a synchronization pulse to
load the counter with the contents of the CTRPHS phase register. The pulse can either be passed through the previous
unit or generated when the counter equals the period (PRD).

ePWM

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: PWM

Description: The ePWM block lets you configure the enhanced PWM unit. The dynamic phase input operates on the
current scaled period.

92 2022.1 Embed

http://www.ti.com/lit/ug/spru791f/spru791f.pdf

Using the Target Support Blocks and Commands

The Duty Cycle input pins control the duty cycle of the PWM waveform. They are at scaled 1.16. The input value is
multiplied by the PWM period and assigned to the PWM compare register to generate a fractional duty cycle. Thus, an
input of 0.5 (fx1.16) yields a 50% duty cycle; an input of zero yields 0% duty cycle; and an input of 0.99997 (the largest
possible positive value in 1.16 notation) yields 100% duty cycle.

To mirror the input pins on the ePWM with the corresponding output pins on ePWM for Sim block, activate Use
CMPC/CMPD, TBCTR=TBPHS on SYNCI pulse, Change Phase Dynamically, and Change Period Dynamically in the
ePWM Properties dialog box.

You can add an input pin that enables the unit externally. A corresponding outpin pin on the ePWM for Sim block is also
present.

Interactive mode: In this mode, both Duty Cycle input pins are active; however, all parameters in the dialog box are
inactive except the PWM Unit parameter.

Additional information:
e ePWM overview

e How to make PWM frequency as low as 50Hz

e How to generate 3-phase PWM for 3-phase inverter

e How to sync two PWM units 1800 out of phase

e How to capture a PWM signal with e CAP block

e Texas Instruments SPRU791A document

2022.1 Embed 93

https://community.altair.com/community?id=community_question&sys_id=22868c3a1b2bd0908017dc61ec4bcb46&view_source=searchResult
https://community.altair.com/community?id=community_search&q=31131&spa=1
https://community.altair.com/community?id=community_question&sys_id=e0b640ba1b2bd0908017dc61ec4bcbf0&view_source=searchResult
https://community.altair.com/community?id=community_question&sys_id=2cb640ba1b2bd0908017dc61ec4bcbf0&view_source=searchResult
https://community.altair.com/community?id=community_question&sys_id=19119b001b449110c4dfdbd9dc4bcb04
http://www.ti.com/lit/ug/spru791f/spru791f.pdf

Using the Target Support Blocks and Commands

280 ePWM Properties

PWWM Linit: 1w

[]Use High Res Timer

[] TBCTR=TBPHS on SYNCI pulse

Change Phase Dynamically

Use CMPC/CMPD

TBPHS (phase): [

GPIOG

Time Base
Rate Scaling: Mone Count Made: Up//Down w
Timer Period: |1nnnn | |3kHz | []Change Period Dynamically

EPWMSYNCO: | EPWMSYMNCI w | EPWMSYNCO pin: | Unused w
CMPA Load On: |CTR = Zemo “w | CMPE Load On: |CTR = Zemo e
Action Qualifier: CMPA CMPE

Z up down up down P GPIO Pin

EPWMA: Kow|X w[X w|X w[X v |X « GPIOOD
EFWMB: Ko | Mo | X v | M v X v || K GPIO1
Deadband:

Delay Mode: Disabled

Polarity: Mo Inversion

Input Select: DbAin = PWMA, DbBin = PWMA

Rising Edge Delay (0-1023):

n
L

Falling Edge Delay (0-1023):

[] Add Enable Pin (0 value forces Fault)

.
U

Send Start ADC Conversion Pulse A (SOCA): DCAEVWT w A
Send Start ADC Conversion Pulse B (SOCB): DCBEWT1 w A
Fault Handling
EPWMA output an fault: High impedance w

Digital Compare...
EFWMB output on fault: High impedance e

One Shot TZx Faut Source: [|1 [J2 [J3 [J4 5 & [JbcA [JDCE

CBC TZx Fault Source:
TZ1: GPIO12

01 2 O3 4 s e Jpca []Dce

S

TZ2: |GPIO13

TZ3: |GPIO14

TZ4: I T2 o TZ6: o
o o

Action Qualifier

EPWMA and EPWMB: Determines which events are translated into specific actions that produce the required

waveforms at EPWMA and EPWMB. Actions are generated based on the following events:

Z: counter =0

CMPA Up: counter = CA during up count
CMPA Down: counter = CA during down count
CMPB Up: counter = CB during up count

94

2022.1 Embed

Using the Target Support Blocks and Commands

CMPB Down: counter = CB during down count
P: counter = period

You can choose the following actions for any of the events:

X = Do nothing

0 = Force output to zero

1 = Force output to one

T = Toggle output
Deadband

Delay Mode: Indicates the deadband mode.
Falling Edge Delay Count: Indicates an independent value for falling edge delay.

Input Select: There are two inputs to the Deadband unit: PWMA and PWMB. These two inputs are DbA and DbB.
They can be driven by any combination of PWMA and PWMB.

Polarity: Indicates the polarity for the specified deadband.

Rising Edge Delay Count: Indicates an independent value for rising edge delay.
Fault Handling

Add Enable Pin: Adds an input pin that lets you enable or disable the unit externally.
Autoreset TZx Fault Source: Allows the reset of the fault on the next cycle of the PWM.

CBC TZx Fault Source: Enables a cycle-by-cycle trip zone fault and selects the pins that are used. The PWM is put
in fault mode until the next cycle.

Digital Compare: Invokes the Digital Compare set up.
EPWMA Output on fault: Specifies the A response to the fault. Your choices are:

Fault Action Disabled: No response to the fault

Forced High: Electrical conductance to 3V

Forced Low: Electrical conductance to ground (0V)

High Impedance: No electrical conductance on the A output

EPWMB Output on fault: Specifies the B response to the fault. Your choices are:

Fault Action Disabled: No response to the fault

Forced High: Electrical conductance to 3V

Forced Low: Electrical conductance to ground (0V)

High Impedance: No electrical conductance on the A output

One Shot TZx Fault Source: Enables a one shot trip zone fault and selects the pins that are used. The PWM is put
in fault mode until code is executed to bring it back up.

PWM Unit: Specifies the unit to be configured.

Send Start ADC Conversion Pulse A: Indicates whether the ePWM unit should send a SOC A (start conversion on
Pulse A) to the ADC unit.

Send Start ADC Conversion Pulse B: Indicates whether the ePWM unit should send a SOC B (start conversion on
Pulse B) to the ADC unit.
Time Base

Change Period Dynamically: Produces an external input pin (%Perdiod (1.16)) that lets you specify a fractional
value for the period on-the-fly. The external value will be multiplied by the period and assigned to the TBPRD (period)
register. This allows you to dynamically modulate the PWM-based frequency.

Change Phase Dynamically: Produces an external input pin (%Phase (1.16)) that lets you specify a fractional value
for the phase on-the-fly. The external value will be multiplied by the phase and assigned to the TBPHS (phase)

2022.1 Embed 95

Using the Target Support Blocks and Commands

register. This allows you to dynamically modulate the PWM-based frequency. To activate Change Phase
Dynamically, you must also activate TBCTR=TBPHS on SYNCI pulse.

CMPA/B Load On: Selects condition to cause the CMPA/B register to be loaded.

Count Mode: Determines the counting mode. Typically, Up/Down is selected.

EPWMSYNCI Pin: Indicates the hardware pin supplying the EPWMSYNCI input pulse for unit 1.
EPWMSYNCO: Indicates the synchronizing signal sent from this unit to unit n+1.

Rate Scaling: Scales the timer source to a slower rate.

TBCTR=TBPHS on SYNCI pulse: The counter for this unit is assigned the value of the TBPHS (phase) register on
occurrence of a SYNCI input pulse.

TBPHS (phase): Specifies an offset value added to the time-based counter on occurrence of the SYNCI input pulse.

Timer Period: Specifies the number of PWM clock ticks for one complete PWM waveform. The frequency of the
PWM signal is determined as follows:

System-Clock-Frequency/Timer-Frequency = PWM-Frequency
For example, 150MHz/150 = 1MHz.

Use CMPC/CMPD: Enables compare C and compare D inputs that can be used to send synchronization pulses to the
ADC or DMA unit.

Use High Res Timer: Enables the use of a high-resolution timer.

926 2022.1 Embed

ePWM digital compare

Using the Target Support Blocks and Commands

EPWM Digital Compare Properties

Urit: 1 [Jilse Blanking ‘window Filker [EVTFILTE TRIPSEL Config...
Ewvent Src Sel [DCTRIPSEL] Event Input Select [TZDCSEL]
DCAL: | T input w EWTaATin: | Event dizabled e
DCAH: | TZ1 input w EYTAZin: | Event dizabled w
DCBL: | TZ1 input w EVTBlin: | Event dizabled w
DCEH: | TZ71 input w EVYTEZin: | Event dizabled v
Ewent Filtering [EVTFILT]
Source EVTATin Irvert Blank \Window
Start Pulse: TECTE=0
Blanking ‘window Offzet: 1] 0. B8535 TECLK:
Blanking “window Ywidth: 0 0. 255 TBCLE=
Ewvent Output Select [DCACTL/DCBCTL]
EWTATout | EVTATIn v [spne TZ to SYSCLEK
EVTAZout | EYTA2in ~ [sune TZ ta SYSCLE.
EVTETout: | EWTBTin ¥ | [swne TZ to SYSCLEK
EWTE2out EVTEZin ~ [sune TZ ta SYSCLE
Dutput Configure [TZCTLADCACTLADCECTL)
EVTalout: | EPWMA=HIZ w| CJapcsoca []«SvNC [Interupt
EvTAZout> | EPwWMa=H| Z v [] Intermpt
E¥TETout: | EPwWMB=HiZ ~ | JaDC SOCE []=SYMNCI [Inbermupt
EVTB2out> EPwWME=HiZ ~ [] Interrpt

1] 4 Cancel Help

Event Filtering

Lets you specify the filter parameters. Activate Use Blanking Window Filter to use these parameters.

Blanking Window Offset: Specifies the number of timer counts before the blanking window occurs.

Blanking Window Width: Specifies the duration of the blanking window.

Source Event: Specifies the source event to be filtered.
Invert Blank Window: Inverts the blanking window.
Start Pulse: Specifies the start of the blanking window.

Event Input Sel: Specifies how the event is activated.

Event Output Select: Specifies whether the event is filtered.

You can also synchronize the event to the system clock.

2022.1 Embed

97

Using the Target Support Blocks and Commands

Event Src Sel: Lets you select inputs for four possible digital compare events. There are three possibilities: trip zone
(TZn), comparator, or, in newer parts, a TRIPIN result. See Texas Instruments documentation for more information.
Output Configure

Specifies the output of the PWM upon occurrence of the event.

EVTAlout: Specifies the value produced by the PWM. You can also specify ADC SOCA, xSYNCI, and if an Interrupt
occurs.

EVTA2out: Specifies the value produced by the PWM. You can also specify if an Interrupt occurs.

EVTB1lout: Specifies the value produced by the PWM. You can also specify ADC SOCB, xSYNCI, and if an Interrupt
occurs.

EVTB2out: Specifies the value produced by the PWM. You can also specify if an Interrupt occurs.
TRIPSEL Config: Lets you select a GPIO pin for each trip source.
Unit: Specifies the compare unit.

Use Blanking Window Filter: Selects the Blanking Window Filter.

ePWM TRIPSEL Config

Piccole GPTRIPxSEL Cenfig
TRIFIM1/TET: GRIO0 w
TRIFIM 2/ TZ2: GRIO0 w
TRIFIM 3/TZ3: GRIO0 o
TRIFIMAIMT: GRIO0 o
TRIFIMG&INT 2: GRIO0 ~
TRIPIME &IMT 3: GRIO0 ~
TRIPINZ/ECAFT: GPIO0 e
TRIFIMB/ECAF2: GRIO0 ~
TRIFIM3/ECAF3: GRIO0 ~
TRIFIM10/ECAP: GRIO0 w
TRIFIM11/ECAPS: GRIO0 ~
TRIFIM12/ECAPE: GRIO0 ~

Cancel Help

ePWM Action

Target Category: Delfino, F280x, Piccolo

Description: The ePWM Action block lets you configure the action qualifier for the F280X. This lets you control the PWM
waveform.

Interactive mode: The entire block is inactive in this mode.

08 2022.1 Embed

Using the Target Support Blocks and Commands

Additional information: Texas Instruments SPRU791A document.

280 ePWM Action Properties

Ca,
£ Lp down up

EP'M Action Qualifier:

0k, Cancel

A R R B b

Fh

Help

EPWM Action Qualifier: Each option represents a possible action the PWM unit may take based on the counter register
state. There are two compare registers: CA and CB. Actions are generated based on the following events:

CA Down: counter = CA during down count
CA Up: counter = CA during up count

CB Down: counter = CB during down count
CB Up: counter = CB during up count

P: counter = period

Z: counter =0

You can choose the following actions for any of the events:

0: Force output to O
1: Force output to 1
T: Toggle output

X: Do nothing

ePWM Action Write

Target Category: Delfino, F280x, Piccolo

Description: The ePWM Action Write block lets you set the action qualifier for the ePWM unit by writing the input values
to the appropriate hardware registers. The appropriate values come from the ePWM Action block.

Interactive mode: The entire block is inactive in this mode.

Additional information: Texas Instruments SPRU791A document.

280 ePWM Action Write Properties

wirite Action Qualifier to ePwhd Lnit; 1 W

ok, Cancel Help

Write Action Qualifier to ePWM Unit: Determines the unit to be configured.

2022.1 Embed

99

http://www.ti.com/lit/ug/spru791f/spru791f.pdf
http://www.ti.com/lit/ug/spru791f/spru791f.pdf

ePWM Chopper

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: PWM

Using the Target Support Blocks and Commands

Description: The ePWM Chopper block lets you configure the chopper unit for the ePWM.

Interactive mode: The entire block is inactive in this mode.

Additional information: Texas Instruments SPRU791A document.

280 ePWM Chopper

ePwt Unit; 1 -
Chop Freguency: 7hOMHz
Firgt Pulse Width: 11333305

Mote: Y'ou will need to include an ePWM block in wour
diagram to create a Pt zignal to chop.

ok, Cancel Help

Chop Frequency: Specifies the base frequency of the chopper.

ePWM Unit: Specifies the ePWM module to be configured.

First Pulse Width: Indicates an integer value from one to 16 to set the width of the first pulse. You specify this parameter
to provide a high-energy first pulse to ensure hard and fast power switch turn on.

ePWM Force Action

Target Category: Delfino, F280x, Piccolo

Description: The ePWM Force Action block lets you force an output for the ePWM units. This is useful for applications

like BLDC motor commutation.

Interactive mode: The entire block is inactive in this mode.

Additional information: Texas Instruments SPRU791A document.

280x ePWM Force Action Properties

Force Output on A: Forcing dizabled w
Force Cutput on B: Forcing dizabled w
OF. Cancel Help

Force Output on A: Performs the selected action:

Forcing Disabled: Forcing is disabled and the ePWM Force Action resumes normal operation.

Force High: Output is 1.
Force Low: Output is 0.

Force Output on B: Performs the selected action:

100

2022.1 Embed

http://www.ti.com/lit/ug/spru791f/spru791f.pdf
http://www.ti.com/lit/ug/spru791f/spru791f.pdf

Using the Target Support Blocks and Commands

Forcing Disabled: Forcing is disabled and the ePWM Force Action resumes normal operation.

Force High: Output is 1.
Force Low: Output is 0.

ePWM Force Action Write

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: PWM

Description: The ePWM Action Write block lets you set the force output mode for the ePWM unit by writing the input
values to the appropriate hardware registers. The appropriate values come from the ePWM Force Action.

Interactive mode: The entire block is inactive in this mode.

Additional information: Texas Instruments SPRU791A document.

280 ePWM Force Action Write Properties

Include EFwWhA, Include EFwWIE

M ate: ou will need toinclude an P bBlock in wour
diagram to configure and enable the TBCLE, since the
force action occurs an a TBCLE. clock edge.

ok, Cancel Help

winite Force Action to ePhwid Lnit; 1

Include EPWMA: Specifies the ePWM output pin A.
Include EPWMB: Specifies the ePWM output pin B.

Write Force Action to ePWM Unit: Determines the unit to be configured.

ePWM for simulation
Target Category: Delfino, F280x, Piccolo
Target Sub-Category: Sim

Description: The ePWM for Simulation block is used during a simulation to produce the value between zero and one that

is currently being supplied to the actual ePWM block.

The ePWM for Simulation block has seven outputs. The A, B, C, and D outputs are four compare registers that represent
the ratio of the compare register over the period. The period and phase outputs represent the duty cycle for the PWM. The
enable output enables the unit externally. The outputs on the ePWM for Simulation block mirror the inputs on the ePWM

block.

Select Sirmulated ePWM Unit >

Simulated eP'whd nit 1 e

Cancel Help

2022.1 Embed

101

http://www.ti.com/lit/ug/spru791f/spru791f.pdf

Using the Target Support Blocks and Commands

Simulated ePWM Channel: Indicates the ePWM channel to be simulated.

eQEP

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: Quadrature Encoder
Description: The eQEP block lets you configure the enhanced quadrature encoder pulse.

Interactive mode: In this mode, only the QPOSCNT1 output pin is active, and all parameters in the dialog box are
inactive except Capture Unit.

Additional information: Texas Instruments SPRU791A document.

F230K:F23033 eQEP Properties

[drut; 1w
Count Mode: | Quadrature [QCHK = iClk, Q00 = iDIR] ~ ~
Paosition Counter Reset an: index event A

M ax Position [32 bit hex): 0-FFFFFFFF

Strobe Effect on Pogition Counber

Mo Action e

[]Inc/Dec Rev Count on Index Pulze

[]5wap 448 channels [reverses count direction)
[] Gate Index Pulse

[Irwert QEPA input [Irwert QEPE input
[lrveert Index Pulze [] Irveert Strobe

[] &ngle Offset Fin

ki Pin Agzignments

iy GRIOZ0 w B: GRIOE b
Index: | Unuzed w | Stobe: | Unused v
ok LCancel Help

Count Mode: For quadrature encoder behavior, select Quadrature. For other behaviors, see Texas Instruments
documentation.

Gate Index Pulse: Enables gating of index pulse.

Inc/Dec Rev Count on Index Pulse: Enables the counting of index pulses.
Invert Index Pulse: Inverts the index pulse.

Invert QEPA input: Inverts the input on QEPA.

Invert QEPB input: Inverts the input on QEPB.

Invert Strobe: Inverts the strobe signal.

Max Position: Indicates the maximum position.

Mux Pin Assignment: Assigns a peripheral 1/0 port to a pin.

102 2022.1 Embed

http://www.ti.com/lit/ug/spru791f/spru791f.pdf

Using the Target Support Blocks and Commands

Position Counter Reset On: Indicates when the position counter is reset. The position counter can be configured to
operate in four modes. In each of these modes, the position counter is reset to 0 on overflow and to QPOSMAX on
underflow. For more information, see Texas Instruments documentation.

Index Event: If the index event occurs during the forward movement, then position counter is reset to zero on the
next eQEP clock. If the index event occurs during the reverse movement, the position counter is reset to the value in
the QPOSMAX register on the next eQEP clock.

First Index Event: If the index event occurs during forward movement, the position counter is reset to zero on the
next eQEP clock. If the index event occurs during the reverse movement, the position counter is reset to the value in
the QPOSMAX register on the next eQEP clock. This is done only on the first occurrence and subsequently the
position counter value is not reset on an index event, but rather on maximum position.

Maximum Position: If the position counter is equal to QPOSMAX, then the position counter is reset to zero on the
next eQEP clock for forward movement and position counter overflow flag is set. If the position counter is equal to O,
the position counter is reset to QPOSMAX on the next QEP clock for reverse movement and position counter
underflow flag is set.

Unit Time Out Event: In this mode, the QPOSCNT value is latched to the QPOSLAT register and then the
QPOSCNT is reset to either zero or QPOSMAX, depending on the direction mode selected by QDECCTL[QSRC] bits
on a unit time event. This is useful for frequency measurement.

Strobe Effect on Position Counter: Determines the action that occurs when the strobe receives a signal.

Swap A/B Channels: Normally, QEPA input is fed to the QA input of the quadrature decoder and the QEPB input is fed
to the QB input of the quadrature decoder. By activating Swap A/B Channels, the input to the quadrature decoder is
swapped, thereby reversing the counting direction.

Unit: Specifies the unit to be configured.

eQEP for simulation
Target Category: Delfino, F280x, Piccolo
Target Sub-Category: Sim

Description: The eQEP block lets you provide simulated quadrature encoder counts for a simulation. The encoder counts
provided to this block will appear on the output of the corresponding eQEP block.

Select Simulated eQEP Channel >

Simulated eQJEF Channel 1 W

Cancel Help

Simulated eQEP Channel: Indicates the ePWM channel to be simulated.

Event Capture
Target Category: C2407, F281X, MSP430, STM32
Target Sub-Category: Capture

Description: The Event Capture block allows you to monitor an input pin (CAP1 ,CAP2, CAP3, CAP4, CAP5, CAP6) and
capture a transition event (rising edge, falling edge, or both) by sampling the current value of a timer on occurrence of the

2022.1 Embed 103

Using the Target Support Blocks and Commands

event. The Event Capture block counts from zero to 32,767 (hexadecimal 7FFF) and then wraps back. The Timer Rate
Scaling parameter allows the base clock rate to be scaled down to up to 1/128 of the base rate. The output of the Event
Capture block is a time interval delta t, which is the interval between two successive events. This can be used by the
Speed Calculator block to determine the speed.

Additional information: Texas Instruments SPRU357 document.

Event Capture Properties

Ewent Trigger: Rizing Edge b

[rput Pir: W

Fux Fin: -

Timer Saurce: Ta0 e

Timer Rate Scaling: Mone e
1] 4 Cancel Help

Event Trigger: The choices are Rising Edge, Falling Edge, Both Edges, and Quadrature (pin 1 and 2).

Input Pin: Selects the input pin to monitor. Input pins CAP 1-3 are controlled by Event Manager 1; and input pins CAP 4-6
are controlled by Event Manager 2. The input pins CAP 1-2 and 4-5 can also be used as quadrature encoder inputs. CAP
1-3 can use either Timer 1 or 2 as the sampling base, and CAP 4-6 can use either timer 3 or 4 as the sampling base.

Mux Pin: Selects which pin a given function is on.

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pinl6 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

Timer Rate Scaling: Select from available fractional time rate multipliers to reduce the timer rate. Fractional rates of up to
1/128th the basic rate are possible.

Timer Source: The available choices depend on the choice of the input pin. Input pins 1 — 3 can use either Timer 1 or
Timer 2. Input pins 4 — 6 can use Timer 3 or Timer 4. Input pins 4 — 6 are available for C2407 only.

Extern Definition

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Generic MCU, Linux AMD64 and Raspberry Pi,
MSP430, Piccolo, STM32

Target Sub-Category: Extern

Description: The Extern Definition block lets you supply any legal file scope C syntax, such as structures with initializers,
#includes, #pragmas, typedefs, arrays, and function definitions. For example, you can specify an array of predefined DMA
waveforms through the Extern Definition block.

Targeting Arduino boards: With the Extern Definition block, you can also specify functions available in Arduino libraries
that are part of the Arduino IDE installed on your computer or available on the internet. Additionally, you can use the
Extern Definition block to specify user-created C or CPP code.

104 2022.1 Embed

http://www.ti.com/lit/ug/spru357c/spru357c.pdf

Using the Target Support Blocks and Commands

External Definition Properties

E sternal Definition;
Hinclude "SRO4. cpp"!

Addefine tigger and echa pin location: on board
Hdefine TRIG_PIM 12
fdefine TRIG_PIM 11

SR04 sr04 = SRO4ECHO_PIN, TRIG_FIN)]

External .obj files:

Library Modules:

Select Library Modules

Cancel Help

External Definition: Lets you enter C code for defining such things as buffer areas, pre-defined waveforms, and Arduino
library modules. In the above dialog, #include and #define directives are preprocessor directives necessary for adding an
Arduino library to a diagram.

External .obj files: Lets you add external OBJ files.
Library Modules: Indicates the Arduino library modules that you selected with Select Library Modules.

Select Library Modules: Lets you select Arduino library modules installed on your computer.

Extern Function

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Generic MCU, Linux AMD64 and Raspberry Pi,
MSP430, Piccolo, STM32

Target Sub-Category: Extern
Description: The Extern Function block lets you call an external function.

The Extern Function block only allows built-in C data types. This means, for example, that you would specify the unsigned
short data type in the Extern Function block to match a uint16 user-defined data type.

2022.1 Embed 105

Using the Target Support Blocks and Commands

External Function Call Properties

Function Mame: |

Jze "$n"" ta reference pin o ie. foal$1.$2)
lnput Pins: |0~ Do not declare function
Return Y alue Type

[]Has retum value

Data Tope: char
Radiz Paint: 0 “word Size: 0
ok Cancel Help

Do Not Declare Function: Prevents the code generator from creating a declaration for the function. This is useful if the
function is already declared in the header file.

Function Name: Specifies the function call. To specify function calls on new lines, press CTRL+Enter.
You can specify arguments to a function that reference the input pins using $ notation. For example, Foo($1,$2).

Input Pins: Specifies the number of input pins.
Return Value Type

Data Type: Specifies the data type of the variable. If you choose hardware register, Embed will only create a
reference in the code and not an external declaration.

char: Smallest addressable unit. On the MSP430, it is 8 bits; on the C2000, it is 16 bits.
double: 64-bit floating point number.

float: 32-bit floating point number.

int: The natural word length for a given architecture.

long: 32 bits.

MATRIX: Pointer to Embed MATRIX data type. The MATRIX structure is defined in VSUSER.H.
SCALED_INT: 16- or 32-bit depending on word size, which is specified separately.

short: 16 bits.

unsigned char: Smallest addressable unsigned unit. On the MSP430, it is 8 bits; on the C2000, it is 16 bits.
unsigned long: Non-negative 32 bits.

unsigned short: Non-negative 16 bits.

Has Return Value: Lets you return a value. If you have a return value, there will be an output pin to reference it.
Radix Point: Sets the binary point.

Word Size: Specifies the word size in bits.

106 2022.1 Embed

Using the Target Support Blocks and Commands

Extern Read

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Generic MCU, Linux AMD64 and Raspberry Pi,
MSP430, Piccolo, STM32

Target Sub-Category: Extern

Description: The Extern Read block lets you read an external variable from another C code module into the diagram. If,
for the Data Type, you choose hardware register, you can enter a hardware peripheral register name and the block output
will produce the value of that register when compiled.

The Extern Read block only allows built-in C data types. This means, for example, that you would specify the unsigned
short data type in the Extern Read block to match a uintl16 user-defined data type.

When you have a combination of Extern Read and Extern Write blocks, and you require a specific execution order, use
the execOrder block to control execution.

You can also use the Extern Read block to integrate handwritten code with generated code.

External Reference Read Properties

Euternal Mame: ||

Data Tepe: char =
Radix Point: 0 Word Size: |0

Declare thiz vanable
[] Define thiz variable

[] Assign Address

ok, Cancel Help

Assign Address: Assigns the variable a specific address. Specify the address in hexadecimal notation. For MSP430
target only.

Data Type: Specifies the data type of the variable. If you choose hardware register, Embed will only create a reference in
the code and not an external declaration. The remaining data types are described below:

<32-bit hardware register>: Accesses predefined 32-bit integer. Typically, the name of a device register.
<16-bit hardware register>: Accesses predefined 16-bit integer. Typically, the name of a device register.
char: Smallest addressable unit. On the MSP430, it is 8 bits; on the C2000, it is 16 bits.

double: 64-bit floating point number.

float: 32-bit floating point number.

int: The natural word length for a given architecture.

long: 32 bits.

MATRIX: Pointer to Embed MATRIX data type. The MATRIX structure is defined in VSUSER.H.
SCALED_INT: 16- or 32-bit depending on word size, which is specified separately.

short: 16 bits.

unsigned: Basic unsigned integer type. Contains at least the [0, 65, 535] range.

unsigned char: Smallest addressable unsigned unit. On the MSP430, it is 8 bits; on the C2000, it is 16 bits.
unsigned long: Non-negative 32 bits.

unsigned short: Non-negative 16 bits.

Declare This Variable: Forces Embed to declare the variable during code generation.

Define This Variable: If activated, Embed provides global definition for the variable.

2022.1 Embed 107

Using the Target Support Blocks and Commands

External Name: Specifies the name of the variable in the C code module.
Radix Point: Sets the binary point.

Word Size: Specifies the word size in bits.

Extern Write

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Generic MCU, Linux AMD64 and Raspberry Pi,
MSP430, Piccolo, STM32

Target Sub-Category: Extern

Description: The Extern Write block lets you write a value to an external variable in another C code module. If, for the
Data Type, you choose hardware register, you can enter a hardware peripheral register name and the block input will be
written to that register when compiled.

The Extern Write block only allows built-in C data types. This means, for example, that you would specify the unsigned
short data type in the Extern Write block to match a uint16 user-defined data type.

When you have a combination of Extern Read and Extern Write blocks, and you require a specific execution order, use
the execOrder block to control execution.

You can also use the Extern Write block to integrate handwritten code with generated code.

External Reference Write Properties

Euternal Mame:

Data Tepe: char =

Radix Point: 0 Word Size: |0

Declare thiz vanable
[] Define thiz variable

[] Assign Address

ok, Cancel Help

Assign Address: Assigns the variable a specific address. Specify the address in hexadecimal notation. For MSP430
target only.

Data Type: Specifies the data type of the variable. If you choose hardware register, Embed will only create a reference in
the code and not an external declaration. The remaining data types are described below:

<32-bit hardware register>: Accesses predefined 32-bit integer. Typically, the name of a device register.
<16-bit hardware register>: Accesses predefined 16-bit integer. Typically, the name of a device register.
char: Smallest addressable unit. On the MSP, it is 8 bits; on the C2000, it is 16 bits.

double: 64-bit floating point number.

float: 32-bit floating point number.

int: The natural word length for a given architecture.

long: 32 bits.

MATRIX: Pointer to Embed MATRIX data type. The MATRIX structure is defined in VSUSER.H.
SCALED_INT: 16- or 32-bit depending on word size, which is specified separately.

short: 16 bits.

unsigned: Basic unsigned integer type. Contains at least the [0, 65, 535] range.

unsigned char: Smallest addressable unsigned unit. On the MSP, it is 8 bits; on the C2000, it is 16 bits.

108 2022.1 Embed

Using the Target Support Blocks and Commands

unsigned long: Non-negative 32 bits.
unsigned short: Non-negative 16 bits.

Declare This Variable: Forces Embed to declare the variable during code generation.
Define This Variable: If activated, Embed provides global definition for the variable.
External Name: Specifies the name of the variable in the C code module.

Radix Point: Sets the binary point.

Word Size: Specifies the word size in bits.

Full Compare Action
Target Category: C2407, F281X
Sub-Target Category: PWM

Description: The Full Compare Action block lets you control the action of the full compare PWM. The Full Compare PWM
engine is designed to give you three half H-BRIDGE inverters, as found in the 3-phase brushless DC and AC induction
motors. In particular, the Full Compare Action block lets you commutate a brushless DC motor.

Full Compare PWM Action Properties
Fisbd Fint: Force low w
Fisbd PinZ: Force low w
Piribd Pinc: Force low W
st Pind: Force low o
st PinG: Force low o
Piritd Ping: Farce low ~
(] Cancel Help

PWM Pin1... PWM Pin6: Indicates how the chip activates the specified pin.

Full Compare PWM

Target Category: C2407, F281X
Sub-Target Category: PWM

Description: The Full Compare PWM block lets you set up a full compare PWM unit. You can choose to specify the
action at initialization and it will not change during execution.

The input pins control the duty cycle of the PWM waveform. They are at scaled 1.16. The input value is multiplied by the
PWM period and assigned to the PWM compare register to generate a fractional duty cycle. Thus, an input of 0.5 (fx1.16)
yields a 50% duty cycle; an input of zero yields 0% duty cycle; and an input of 0.99997 (the largest possible positive value
in 1.16 notation) yields 100% duty cycle.

Interactive mode: The entire block is inactive in this mode.

2022.1 Embed 109

Using the Target Support Blocks and Commands

Full Compare PWM Properties

Timer Saurce: 1 w

Timer Rate Scaling: Mone

Timer Period [count]: 15000
Initial Timer Count: D

Count Mode: p/Down -
CMP Reg Load O CTR =Zem e

[] &dd Enable Pin [0-Hi 2 1-:Momal mode)
[] Add External &ction Pin

Phdtd Pinc | P w

Action; Active low
[] Uze Deadbard
Deadband prescaling: MHane
Deadband tick count; 1]
k. Cancel Help

Action: Specifies the action to be applied to the selected PWM pin.

Add Enable Pin: Adds an input pin to the block that allows software control to enable or disable the PWM unit.
Add External Action Pin: Defaults to Active High if you do not activate.

CMP Reg Load On: Determines the event that causes the CMP register to be loaded. You have three choices:

CTR=Zero: Loads when counter equals 0
CTR=PRD or Zero: Loads when counter equals period or 0
Immediate: Loads immediately

Count Mode: Specify one of four modes: up and down; up; hold; or TDIR control. Note: Do not specify hold or TDIR
control.

Initial Timer Count: Specifies the initial count for the timer. The timers are started in numerical order, one after the other
with no intervening instructions. Order placement on screen will have no effect.

PWM Pin: Determines which pin to which an action is to be supplied. There are six pins.

Timer Period: In conjunction with Timer Rate Scaling, determines the base PWM frequency. See Texas Instruments
documentation for more information.

Timer Rate Scaling: In conjunction with Timer Period, determines the base PWM frequency. See Texas Instruments
documentation for more information.

Timer Source: Specifies the timer source. You can choose either 1 or 3.

Use Deadband, Deadband Prescaling, Deadband Tick Count: Sets the amount of deadband between PWM switching
to avoid drawing too much current in a power-controlled circuit.

110 2022.1 Embed

Using the Target Support Blocks and Commands

Get CPU Usage

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Linux AMD64 and Raspberry Pi, MSP430, Piccolo,
STM32

Target Sub-Category: Target Interface

Description: The Get CPU Usage block provides CPU usage for the enclosing task for a compound block driven off an
interrupt or scheduled as a background task or scheduled as a custom rate task.

CPU usage is displayed in raw clock ticks. To translate the raw clock ticks into a percentage of the time slice of the block
that it’s inside of, use the Get CPU usage diagram under Toolbox > Tools.

Note: For Linux targets, the CPU rate is always considered to be 1 GHz.

GPIOIn
GPIO In for Linux Raspberry Pi

Target Category: Linux Raspberry Pi
Target Sub-Category: Sim
Description: The values presented to the input of the GPIO In block will appear on the output of the actual GPIO In block

during a simulation.

Linux RPi 1APIus Simulated GPIO In Properties X

Channel: PAD:1

Offset: 0 Bit Width: e

Corcel e

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Indicates the channel number. Click here for Raspberry Pi pin mapping.
Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register. Click here for Raspberry Pi pin mapping.

GPIO In C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32
Target Category: C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32
Target Sub-Category: Sim

Description: The values presented to the input of the GPIO In block will appear on the output of the actual GPIO In block
during a simulation.

2022.1 Embed 111

https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

C2407 LF2407 Simulated GPIO In Properties ot
Port: A o~ Offset [0 - Bit Wit w
Firn Function: GRIO_PIM_TYPE_STD ~
Pull up/down current: 2ma '
Title: |

Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.
Offset: Specifies the offset into the digital port register.

Pin Function: Specifies the pin function.

Port: Specifies the digital register.

Pull Up/Down Current: Lets the specified pin draw current in ON or OFF mode. It is typically used for communication
protocaols, like 12C.

Title: Indicates the channel title.

GPIO Input
GPIO Input for C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi, Piccolo

Target Category: C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi, Piccolo
Target Sub-Category: GPIO

Description: The GPIO Input block reads digital data into the diagram. Use GPIO Qualification to set up qualification time
intervals for GPIO pins on Delfino, F280x, F281X, and Piccolo devices.

F281 F2812 GPIO Input Properties et

Channel GRIDAD
0 Bit Width:
Part:

Title: |
Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.

Channel: Indicates the channel number. Click here for Raspberry Pi pin mapping.

Enable pull-up resistor: Enables the pull-up resistor on the input pin to 3.3V. This parameter is not available for Linux
Raspberry Pi, Texas Instruments C2407 and F281X, or Generic MCU targets.

112 2022.1 Embed

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

Invert Input: Inverts the input. If the input is 3.3V, it is inverted to zero; if the input is zero, it is inverted to one. This
parameter is available for Texas Instruments dual core, F280025, and F280049 targets.

Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register. For Linux Raspberry Pi, two ports are available for Raspberry Pi 1A+ and 1B+. For all
other Raspberry Pi devices, only one port is available. Click here for Raspberry Pi pin mapping.

Title: Indicates the channel title.

GPIO Input for STM32
Target Category: STM32
Target Sub-Category: GPIO

Description: The GPIO Input block reads digital data into the diagram.

5TM32 FO30CE GPIO Input Properties >

Channel: Py 01
0 Bit Width:

Part: Pa

GPIO mode; [Fipiik e
Pull up/dovarn; Mone e
Speed: High Frequency e
Tile: |

Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Indicates the channel number.

GPIO Mode: Indicates the GPIO mode.

Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register.

Pull up/down: Performs the selected action:

Pull Up: Turns the upper resistor ON and ties the pin to VDD.
Pull Down: Turns the lower resistor ON and ties the pin to ground.
None: Neither resistor is activated.

Speed: Selects the frequency. See the device datasheet for the frequency specifications.

Title: Indicates the channel title.

2022.1 Embed 113

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

GPIO Out
GPIO Out for Linux Raspberry Pi

Target Category: Linux Raspberry Pi
Target Sub-Category: Sim
Description: The input values of the actual GPIO Out block will appear on the output of the GPIO Out block during a

simulation.

Linux RPi 14Plus Simulated GPIO Out Properties X

Channel: PAD:
Offset: 0 Bit Width:

Corcel e

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Indicates the channel number. Click here for Raspberry Pi pin mapping.
Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register. Click here for Raspberry Pi pin mapping.

GPIO Out for C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32
Target Category: C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32
Target Sub-Category: Sim

Description: The input values of the actual GPIO Out block will appear on the output of the GPIO Out block during a
simulation.

2407 LF2407 Simulated GPIC Out Properties >
Port: 4~ Offset: |0 Bit width: w
Fir Furnction: GRIO_PIN_TYPE_STD b
Pull up/down current: 2ma e
Title: |

Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.

Offset: Specifies the offset into the digital port register.

114 2022.1 Embed

https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

Pin Function: Specifies the pin function.
Port: Specifies the digital register.

Pull Up/Down Current: Lets the specified pin draw current in ON or OFF mode. It is typically used for communication
protocols, like 12C.

Title: Indicates the channel title.

GPIO Output

GPIO Output for C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi,
Piccolo

Target Category: C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi, Piccolo

Target Sub-Category: GPIO

Description: The GPIO Output block outputs digital data. Use GPIO Qualification to set up qualification time intervals for
GPIO pins.

F280X F280049 GPIO Output Properties X

Chaninel GFIOD
0 Bit width:
Puort;

Dirive with =BAR |0 Config.. || GPIOO
[] Enable pull-up resistar

Title: |

Caricel Help

Bit Width: Specifies the number of contiguous bits to read in.
Channel: Indicates the channel number. Click here for Raspberry Pi pin mapping.

Drive with XBAR: When activated, the GPIO output is taken directly from OUTPUTXBAR, which you can configure to
comparator inputs, GPIO inputs, ADC events, eCAP, sigma delta comparators. Note that only certain GPIO outputs are
associated with the OUTPUTXBAR.

To configure the OUTPUT XBAR signal source, click Config. An XBAR dialog box appears. First, make sure the XBAR
register matches the one in the GPIO dialog box. You can then select one source signal from the 128 possible inputs. If
you select an INPUT XBAR, click OK to return to the GPIO dialog box and select the input GPIO from the dropdown to the
right of the Cofig button. For more information, see Texas Instruments SPRU712 document.

This parameter is available only on Texas Instruments dual core, F280025, and F280049 targets.

Enable pull-up resistor: Enables the pull-up resistor on the output pin to 3.3V. This parameter is not available for Linux
Raspberry Pi or Generic MCU targets.

Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register. For Raspberry Pi, two ports are available for Raspberry Pi 1A+ and 1B+. For all other
Raspberry Pi devices, only one port is available. Click here for Raspberry Pi pin mapping.

Title: Indicates the channel title.

2022.1 Embed 115

https://www.raspberrypi.org/documentation/usage/gpio/
https://www.ti.com/lit/ug/spru712h/spru712h.pdf?ts=1612543267153&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

GPIO Output for STM32

Target Category: STM32

Target Sub-Category: GPIO

Description: The GPIO Output block outputs digital data.

5TM32 G434VE GPIO Qutput Properties >

Charnel: P& 01
0 Bit width:

Port; PA

GPIO mode:; Puszh Pull Dukput b
Pull up/dawrn: MHane e
Speed: High Frequency e
Tile: |

Cancel Help

Bit Width: Specifies the number of contiguous bits to read in.

Channel: Indicates the channel number.
GPIO Mode: Configures the output as push-pull or open-drain.

Push-pull mode: When a logical 1 is presented, the upper switch turns ON and the lower switch turns OFF. When a
logical O is presented, the upper switch turns OFF and the lower switch turns ON and ties the output pin to ground.
Open-drain mode: 0 ties the output to ground; 1 leaves the output floating (Hi-Z state). In this case, the voltage is
defined by the pull up or pull down resistor setting.

Always try to apply the lowest amount of voltage to minimize power usage.
Offset: Specifies the offset into the digital port register.

Port: Specifies the digital register.

Pull up/down: Performs the selected action:

Pull Up: Turns the upper resistor ON and ties the pin to VDD.
Pull Down: Turns the lower resistor ON and ties the pin to ground.
None: Neither resistor is activated.

Speed: Indicates the speed of GPIO output power switches. For more information, consult the STMicroelectronics device
specification sheet.

Title: Indicates the channel title.

116 2022.1 Embed

Hall Sensor
Target Category: STM32
Target Sub-Category: Hall Sensor

Using the Target Support Blocks and Commands

Description: The Hall Sensor block uses Hall effect positional sensors to help determine rotor position.

Hall Sensor Properties

Tirner Linit: TIM1 ~ Tirmer Clk. Divisor:
[] lmwert Hal []Add P/t tigger delay pin
Input & Filker: MWaone o Input B Filker:
ki Pin Agzignments
A =X e B: | PAS w (5%
aF. Cancel

HRCAP

Target Category: Delfino, F280x, Piccolo
Target Sub-Category: Capture

P]

Mone e

Fa10 w

Help

Description: The HRCAP block performs a high-resolution capture.

F28x HRCAP Properties
Capture Unit: w [rput Clack; SYSOLE
Max Events: w | Mu Pin:
ok Cancel

Help

Capture Unit: Specifies the unit to be configured.

Input Clock: Lets you choose between the System and PLL clock.

Max Events: Indicates the maximum number of events to be tracked.

Mux Pin: Selects which pin a given function is on.

Note: Some F280x and MSP430 devices have different functions for the same physical pin on the chip. This is referred to
as multiplexing, or muxing, for short, and is done because pins are expensive. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments provides multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with

2022.1 Embed

117

Using the Target Support Blocks and Commands

ePWM5A and ADCSOCAQO; pin 12 is shared with TZ1 and SPISIMOB; and pinl6 is shared with SPISIMOA and TZ5. If
you want ePWM5A on a pin, you cannot use pin 8 for CANTXB, but rather pin 12 or 16.

I/0 Memory Read

Target Category: C2407

Description: The I/0O Memory Read block is used to read values from I/O memory space.

I/Q Port Read Properties

[0 Part Address:

Cancel Help

1/0 Port Address: Specifies the address in hexadecimal notation.

I/0 Memory Write
Target Category: C2407

Description: The I/O Memory Write block is used to write values to I/O memory space.

/O Port Write Properties

[0 Part Address:

Corcel | [Hop

1/0 Port Address: Specifies the address in hexadecimal notation.

12C Read Buffer
Target Category: Arduino, Cortex M3, Delfino, F280x, F281X, MSP430, Linux Raspberry Pi,MSP430, Piccolo, STM32
Target Sub-Category: 12C

Description: The 12C Read Buffer block is used to extract data from the 12C read buffer. You can choose the type of data
to be extracted.

Use the appropriate 12C Config blocks to configure the unit.

I2C Read Properties x
Port: 1 v
Block Output: Data w
Data Type: char w

Cancel Help

118 2022.1 Embed

Block Output: Selects the function of the block.

Bus Busy: Indicates whether the bus is transmitting data.

Using the Target Support Blocks and Commands

Data: Extracts the data from the buffer determined by Data Type.
Port Status: Extracts the hardware status register determined by the Port parameter.

Receive Queue Empty: 0 if not empty; 1 if empty.
Receive Queue Overrun: 0 if not overrun; 1 if overrun.

Receive Queue Length: Returns the value of the number of data bytes in the receive queue.
Receive Queue Max Length: Returns the maximum length of the receive queue.

Transmit Queue Full: 0 if not full; 1 if full.

Transmit Queue Length: Returns the value of the number of data bytes in the transmit queue.
Transmit Queue Max Length: Returns the maximum length of the transmit queue.

Data Type: Selects the data type.

char: Smallest addressable unit. On the MSP, it is 8 bits; on the C2000, it is 16 bits.

long: 32 bits.
short: 16 bits.

Port: Specifies the hardware unit. Click here for Arduino pin mapping. Click here for Raspberry Pi pin mapping.

I2C Start Communication

Target Category: Arduino, Cortex M3, Delfino, F280x, F281X, Linux Raspberry Pi, MSP430, Piccolo, STM32

Target Sub-Category: 12C

Description: The 12C Start Communication block is used to start sending the current contents of the queue.

Use the appropriate |12C Config blocks to configure the unit.

[2C Start Communication Properties >
Port: A w

Actian: Start Receive

tezzage Byte Count: 1 e

Slave Address o] o
Bus Mode: i

[]5end STOF at Transmizzion End
[] 5et Data Length Dynamically
[] 5end MACEK after next byte read

Cancel Help

Action: Lets you choose between starting to send and starting to receive data.

Bus Mode: Lets you choose between master and slave mode. When the target device is Arduino and Bus Mode is set to
Slave, you must encapsulate the slave response block logic in a compound block and enable the 12C Receive/Transmit
interrupt. Examples are under Examples > Embedded > Arduino > 12C.

Message Byte Count: Specifies the number of bytes to send or receive before the STOP signal (if checked) is sent.

2022.1 Embed

119

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

Port: Specifies the address. Click here for Arduino pin mapping. Click here for Raspberry Pi pin mapping.

Send NACK after next byte read: Sends a Not Acknowledged signal at the end of the data packet transmission. This
parameter is available only for C2000 blocks.

Send STOP at Transmission End: Sends a STOP signal at the end of the transmission.

Set Data Length Dynamically: When activated, overrides the Message Byte Count parameter and adds a Data Length
input pin to the block to dynamically control the data length. This parameter is available only when Bus Mode is set to
Master.

Slave Address: Specifies the address of the slave to be written to or read from using 7-bit addressing.

12C Write Buffer

Target Category: Arduino, Cortex M3, Delfino, F280x, F281X, Linux Raspberry Pi, MSP430, Piccolo, STM32
Target Sub-Category: 12C

Description: The 12C Write Buffer block is used to write data to the 12C buffer. You can choose the type of data to be
written.

Use the appropriate |12C Config blocks to configure the unit.

|2 Write Properties =
Part: 1 -
Data Type: char v

Cancel Help

Data Type: Selects the data type.

char: Smallest addressable unit. On the MSP, it is 8 bits; on the C2000, it is 16 bits.
long: 32 bits.
short: 16 bits.

Port: Specifies the hardware unit. Click here for Arduino pin mapping. Click here for Raspberry Pi pin mapping.

JSON

Target Category: Arduino, Delfino, F280x, F281X, Generic MCU, Linux AMD64 and Raspberry Pi, Piccolo, STM32;
Blocks > Extensions > |IOT

Target Sub-Category: loT

Description: The JSON block provides an encoding format for translating data into text strings that can be sent and
received over the internet.

JSON is used in conjunction with the MQTT blocks to create JSON-formatted text. By using MQTT to send JSON-
formatted text to mqtt.smartcore.com, you can take advantage of SmartWork’s ability to trigger actions and activate rules
that look at the data within the JSON data packet. SmartWorks is an Altair IOT development platform. Output from the
JSON block is in the following format:

N UM, K

{“protocoal”: “v2”, “checksum”: “*, “device”: “devicename@username.username”, “at”: “now”,“data”: {*Key”: Value}}

120 2022.1 Embed

https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

J50M Block Properties >
Packet Byte Size: IEI Key/Value Pairs: i e
[]indude Altair SmartiWorks 150N Header []350N Syntax Chedk

Altair SmartWorks Header
{"protocol™: 2"
, chedksum™;™
» device™; devicename EUsername. USErmame

. data™:{ <key:value pairs= }
H

Cancel Help

Altair SmartWorks Header

Specifies the output format of the JSON block. The ,“device”: specifies the device that is sending the data. For
SmartWorks, the value is specified in the following format:

devicename@username.username

Include Altair SmartWorks JSON Header: When activated, the SmartWorks platform can take actions based on the
values of the key pairs.

JSON Syntax Check: Validates the format of the JSON text string.

Key/Value Pairs: Indicates the number of Key/Value input pin pairs on the JSON block. The humber you specify is
reflected under the Key and Value parameters. Also, when you exit the dialog box, the input pins on the block are updated
accordingly. You cannot use the Add Connector and Remove Connector commands on JSON blocks.

Packet Byte Size: Specifies the maximum buffer size of the data string. Larger strings are truncated to the maximum
buffer size.
Examples

See Examples > Blocks > Extensions > |OT.

Monitor Buffer Empty
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, Piccolo, STM32
Target Sub-Category: Monitor Buffer

Description: The Monitor Buffer Empty block produces a one when the monitor buffer is empty, and zero when it has one
or more items.

Monitor Buffer Empty Properties >
Buffer Size [words]: 0O Buffer (D] w
0k Cancel Help

2022.1 Embed 121

Using the Target Support Blocks and Commands

Buffer ID: Indicates the numeric ID of the buffer to read. This number must correspond to an existing Monitor Buffer
Empty block on the target.

Buffer Size: Reserved.

Monitor Buffer Read
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, Piccolo, STM32
Target Sub-Category: Monitor Buffer

Description: The Monitor Buffer Read block is a debug information block for receiving information from a Monitor Buffer
Write block running on the target. The Monitor Buffer Read block only runs on the host PC.

The Monitor Buffer Read block has two outputs:
e Trig: A data ready pin
o Buffer: A vector of the monitored data received from the target.

When the Trig pin is high, a new vector of monitored values are ready on the Buffer pin. Typically, this block is connected
to an enabled plot block with the Trig pin connected to the plot enable pin and the Buffer pin connected to a plot data input
pin. In this way, the plot block will appear as an interactive oscilloscope.

Use the Monitor Buffer Write block on the target to write data to this block.

Monitor Buffer Read Properties >
Buffer Size [wordz), 0 B uffer 1D 1] e
ok Cancel Help

Buffer ID: Indicates the numeric ID of the buffer to read. This number must correspond to an existing Monitor Buffer Write
block on the target.

Buffer Size: Indicates the number of words in the monitor buffer on the target. This is read-only.

Monitor Buffer Write
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, Piccolo
Target Sub-Category: Monitor Buffer

Description: The Monitor Buffer Write block is a debug information block for transmitting information from the target to
the host PC.

The Monitor Buffer Write block has two inputs:
e Trig: A data ready pin.

e Signal: Receive data pin. When the trigger pin is high and the buffer is empty, the values entering the signal pin
are written to the monitor buffer until the buffer is full, regardless of the value on the trigger pin. You may use any
combination of Embed blocks to form the trigger expression. Non-numeric data is not supported as input to the
data pin. You can convert the data by wiring a convert block to the data pin.

Use the Monitor Buffer Read block on the host PC side to read the data from this block. After the Monitor Buffer Read
block reads the monitor buffer, it resets the target buffer to empty state.

122 2022.1 Embed

Using the Target Support Blocks and Commands

Monitor Buffer Write Properties >

Buffer Size [words): | 100 Buffer [D: 1] w

Cancel Help

Buffer ID: Indicates the numeric ID of this buffer. The Buffer ID will be referenced by the Monitor Buffer Read block.

Buffer Size: Indicates the number of words to be allocated to the monitor buffer.

MQTT Publish

Target Category: Arduino, Generic MCU, Linux AMD64 and Raspberry Pi
Target Sub-Category: 10T, 0T > ESP8266WiFi

Description: The MQTT Publish block publishes messages on the specified topic from your hardware to the Message
Queuing Telemetry Transport (MQTT) broker. The broker is primarily responsible for receiving all messages, filtering
messages, deciding who is interested in the messages, and publishing the messages to all subscribed clients.

The MQTT Publish block has two inputs:

e Enable: When the enable pin is high, the values entering the data pin are presented to the transmit queue.
When the enable pin is zero, values entering the data pin are ignored.

e Data: Accepts the string to be published to the cloud.

MOTT Publish Properties >
Huost Mame: rru ttbroker. altairzmartcaore. com |
T opic: |test |
Izer Mame:

Paszword:

QoS 0-Try once [no ACK) ~

Puait: 1883 kFeep Alivezec):

[] Fietain last message on zerver
Last \Will and Testament
il oS5: 0-Try once [ho ACK] W

[] Retain last will mezsage on server

Mezzage:

Cancel Help

2022.1 Embed 123

Using the Target Support Blocks and Commands

Host Name: Specifies the MQTT broker address. For SmartWorks, use mqttbroker.altairsmartcore.com for data
exchange and mqtt.altairsmartcore.com for API.

Keep Alive: Specifies the maximum time interval between when the client finishes sending a PING message to the broker
and starts to send the next PING message. The maximum time interval is 18 hours, 12 minutes, and 15 seconds. When
Keep Alive is set to 0, the keep alive mechanism is de-activated and Last Will and Testament is ignored. The default
time interval is 60 sec.

Last Will and Testament

Message: Specifies the last will message to be sent to subscribers. If the broker detects that the publisher has
unexpectedly disconnected, it sends the last will message to all subscribers of the specified topic.

Retain last will message on server: Retains the last will message if the publisher unexpectedly disconnects.
Will QoS: Specifies the quality of service to the broker. Your choices are:

0: Sends the message once with no guarantee of delivery. The broker does not acknowledge delivery.

1: Guarantees message delivery, but it could send duplicates. The broker acknowledges delivery.

2: Guarantees message delivery without duplicates. The broker acknowledges delivery, then both the broker and
publisher discard the stored messages.

Password: Specifies the user password. This is used for authenticating with the broker. As you type the password into
the Password parameter, the typed characters are converted to dots.

Port: Indicates the port that the broker is using. The default unencrypted port is 1883; the default encrypted port is 883.
QoS: Specifies the quality of service to the server. Your choices are:

0: Sends the message once with no guarantee of delivery. The server does
not acknowledge delivery.

1: Guarantees message delivery, but it could send duplicates. The server
acknowledges delivery.

2: Guarantees message delivery without duplicates. The server
acknowledges delivery, then both the server and publisher discard the
stored messages.

Retain last message on server: Retains the last message if the publisher unexpectedly disconnects.
Topic: Specifies the topic on which the message is to be published. For SmartWorks, enter your-API-key/streams.

User Name: Specifies the user ID on the MQTT broker. This is used for authenticating with the broker. For SmartWorks,
enter your API key.
Examples

See Examples > Blocks > Extensions > |OT.

MQTT Subscribe

Target Category: Arduino, Generic MCU, Linux AMD64 and Raspberry Pi
Target Sub-Category: |oT, loT > ESP8266WiFi

Description: The MQTT Subscribe block receives messages on topics to which you have subscribed. When you
subscribe to a topic, the Message Queuing Telemetry Transport (MQTT) broker sends messages to the MQTT Subscribe
block on that topic. The broker is primarily responsible for receiving all messages, filtering messages, deciding who is
interested in the messages, and publishing the messages to all subscribed clients.

The MQTT Subscribe block has two outputs:

124 2022.1 Embed

Using the Target Support Blocks and Commands

e rdy: Lets you know when new data has arrived.

e val: The data in string format.

MOTT Subscribe Properties >
Host Mame: rru ttbrok.er. altairzmartcaore. com |
T opic: |test |
Izer Mame:

Paszword:

QoS 0-Try once [no ACK) ~

Puait: 1883 kFeep Alivezec):

[] Fietain last message on zerver
Last \Will and Testament

il oS5: 0-Try once [ho ACK] W

[] Retain last will mezsage on server

Mezzage:

Cancel Help

Host Name: Specifies the MQTT broker address. For SmartWorks, use mqttbroker.altairsmartcore.com for data
exchange and mqtt.altairsmartcore.com for API.

Keep Alive: Specifies the maximum time interval between when the client finishes sending a PING message to the broker
and starts to send the next PING message. The maximum time interval is 18 hours, 12 minutes, and 15 seconds. When
Keep Alive is set to 0, the keep alive mechanism is de-activated and Last Will and Testament is ignored.The default
time interval is 60 sec.

Last Will and Testament

Message: Specifies the last will message to be sent to subscribers. If the broker detects that the publisher has
unexpectedly disconnected, it sends the last will message to all subscribers of the specified topic.

Retain last will message on server: Retains the last message if the subscriber unexpectedly disconnects.
Will QoS: Specifies the quality of service to the broker. Your choices are:

0: Sends the message once with no guarantee of delivery. The broker does not acknowledge delivery.

1: Guarantees message delivery, but it could send duplicates. The broker acknowledges delivery.

2: Guarantees message delivery without duplicates. The broker acknowledges delivery, then both the broker and
publisher discard the stored messages.

Password: Specifies the user password. This is used for authenticating with the broker. As you type the password into
the Password parameter, the typed characters are converted to dots.

Port: Indicates the port that the broker is using. The default unencrypted port is 1883; the default encrypted port is 883.

2022.1 Embed 125

Using the Target Support Blocks and Commands

QoS: Specifies the quality of service to the server. Your choices are:

0: Sends the message once with no guarantee of delivery. The server does
not acknowledge delivery.

1: Guarantees message delivery, but it could send duplicates. The server
acknowledges delivery.

2: Guarantees message delivery without duplicates. The server
acknowledges delivery, then both the server and publisher discard the
stored messages.

Topic: Specifies the topic on which the message is to be published. For SmartWorks, enter your-API-key/streams.

User Name: Specifies the user ID on the MQTT broker. This is used for authenticating with the broker. For SmartWorks,
enter your API key.
Examples

See Examples > Blocks > Extensions > |OT.

Op Amp
Target Category: MSP430

Description: The Op Amp block supports the MSP430 OP AMP peripheral, which performs a variety of operational
amplifier functions.

Additional information: Texas Instruments MSP56F document.

Op Amp Properties

Urit; 0

Functior: General purpoze opamp
Irverting Input: T [——

Monirverting [nput; T

Slew Rate: OFf, autput kigh 2 w
Feedback Resistar: Tap 0-0R/AER w
Ovutput: OADOUT 241 w

Resistor Connection: | Rtop= AYss Rbat = o

[] Irwerting input extemally available

k. Cancel Help

Feedback Resistor Selects the internal feedback resistor configuration.:

Function: Selects the operating mode.

Inverting Input: Selects the device pin for the inverting input.

Inverting Input Externally Available: Checks if inverting input is available on a pin.

Noninverting Input: Selects the device pin for the noninverting input.

126 2022.1 Embed

https://www.ti.com/lit/ug/slau056l/slau056l.pdf

Using the Target Support Blocks and Commands

Output: Selects the device pin for the output.
Resistor Connection: Selects the feedback resistor.
Slew Rate: Selects the speed of response. (Low Speed = Low Power).

Unit: Specifies the OP AMP peripheral unit number.

PWM
PWM for Arduino

Target Category: Arduino
Target Sub-Category: PWM

Description: The PWM block can be used for several tasks including dimming an LED, generating modulated and audio
signals, and providing variable speed motor control. The PWM block accepts scaled integer (fixed point) 8.16 input.

Arduino Uno Properties x

Arduino Pin: |3 e
Atmel Pin: PD3 (Arduino pin3)/Timer 2

Prescaler: 1 w | Freguency (kHz):62. 500

— e

Arduino Pin: Indicates the pin number on the Arduino board. Click here for Arduino pin mapping.

Atmel Pin: Indicates the timer associated with the selected PWM pin. Timers 0 and 2 are 8-bit timers; Timer 1 is a 16-bit
timer. This is a read-only parameter.

PreScaler: Indicates the prescaler value used to divide the system clock frequency that drives the PWM counter. The
frequency is the effective PWM waveform frequency, which is the system clock divided by the prescale value divided by
256 (period register size). Click here for the Arduino frequency table.

PWM for Linux Raspberry Pi
Target Category: Linux Raspberry Pi
Target Sub-Category: PWM

Description: There are two independent output bit-streams, clocked at a fixed frequency, for the PWM block. Additionally,
there are two independent PWM channels (0 and 1), each of which can be connected to a limited subset of GPIO pins.
Both PWM channels are driven by the same PWM clock, whose clock divider can be varied. Each channel can be
separately enabled. The average output of a PWM channel is determined by the ratio of DATA/RANGE for that channel.

The PWM pin available on the GPIO header is shared with the audio system. This means that you cannot use PWM
output and play audio through the 3.5mm jack at the same time.

The PWM block accepts scaled integer (fixed point) 1.16 input.

2022.1 Embed 127

Linux RPi 1APlus PWM Properties

PWM Unit:

GPIO Fin:

Period:

Clock Source:

Clock Divider:

Frequency:

PWIMO v
GPIDA12 v
| 10000 | Range: 64-250000000

[]change Period Dynamically

| 500 MHz |

2 o

| 25,000 KHz |

Cancel Help

Using the Target Support Blocks and Commands

Change Period Dynamically: Produces an external input pin that lets you specify a fractional value for the period on-the-
fly. The external value will be multiplied by the period and assigned to the period register. This allows you to dynamically
modulate the PWM-based frequency.

Clock Divider: Specifies the value used to divide the system clock frequency that drives the PWM counter.

Clock Source: Indicates the PWM input clock speed. For Raspberry Pi, this is the system clock, which is determined by
the CPU selected in the Target Config block.

Frequency: Indicates the frequency of the generated PWM signal.

GPIO Pin: Specifies the GPIO pin on the device. Click here for Raspberry Pi pin mapping.

Period: Specifies the number of PWM clock ticks for one complete PWM waveform. The frequency of the PWM signal is
determined as follows:

Clock-Source-Frequency/Period = PWM-Frequency

For example, 150MHz/150 = 1MHz.

PWM Unit: Specifies the unit to be configured.

128

2022.1 Embed

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

PWM for C2407, F2812
Target Category: C2407, F281X
Target Sub-Category: PWM

Description: There are four timers on the 2407, and each one has a PWM. For each PWM, you can specify the timer,
timer rate, and timer period. Together, they provide the base frequency for the PWM. The input pin represents the fraction
of ON time for the PWM pulse. A value of 0.99997 provides 100% ON time; a value of zero provides no ON time.

Interactive mode: In this mode, the Duty Cycle input pin is active; however, all parameters in the dialog box are inactive
except Timer Source.

Additional information: Creating phase-shifted PWM signals.

PWM Properties

Timer Source: 1 w

Timer Rate Scaling: Mone

Timer Period: 10000
[ritial Tirmer Covnt; D

Count Mode: Up v
GPIO Pir: -
1] 4 Cancel Help

Count Mode: Specify one of four modes: up and down; up; hold; or TDIR control. Do not specify hold or TDIR control.

Initial Timer Count: Specifies the initial count for the timer. The timers start in numerical order, one after the other with no
intervening instructions. Order placement on screen will have no effect.

Timer Period: In conjunction with Timer Rate Scaling, determines the frequency of the PWM waveform. For example, if
the base clock rate is 32MHz and the Timer Rate Scaling is 1/32, the effective clock rate is 1MHz.

If Timer Period is set to 10, the output PWM frequency is 1/10 the effective clock rate of 1IMHz (100kHz). However, this is
a poor example since if Timer Period is set to be only 10, the output PWM frequency can only be varied in steps of 10%.

You must set Timer Rate Scaling and Timer Period in such a way that the desired output PWM frequency is obtained,
while retaining fine control over the output duty cycle.

See Texas Instruments documentation for more information.

Timer Rate Scaling: In conjunction with Timer Period, determines the base PWM frequency. Select from available
fractional timer rate multipliers to reduce the timer rate. Fractional rates of up to 1/128th the basic rate are possible. See
Texas Instruments documentation for more information.

Timer Source: Specifies the timer source. If you choose the same timer for each PWM, then you must also choose the
same timer rate and timer period for each PWM. There is a one-to-one correspondence between each EVM timer and the
PWM output. For example, PWML1 uses Timer 1 and so on.

PWM for MSP430
Target Category: MSP430
Target Sub-Category: PWM

2022.1 Embed 129

https://forum.altair.com/topic/28756-how-to-create-phase-shifted-pwm-signals-on-c2000/

Using the Target Support Blocks and Commands

Description: The PWM block accepts scaled integer (fixed point) 1.16 input.

PWM Properties

Tirmer 5 ource: Al v
Timer Configure
Timner Rate Scaling: Mone
Tirmer Period: 10000
Count Mode: Up e
Fiadbd Configure
Frwdhd Ot TA00UTY w
Pt b ode: Software w
Pt Pin F1.2 w

Cancel Help

PWM Configure
PWM Out: Chooses the pin on which the PWM appears.

PWM Pin: See Timer A and Timer B descriptions in the MSP430UM.PDF file supplied with this software.

PWM Mode: See Timer A and Timer B descriptions in the MSP430UM.PDF file supplied with this software.
Timer Configure

Count Mode: Specify one of four modes: Hold, Up/Down, Up, and Continuous.

Timer Period: In conjunction with Timer Rate Scaling, determines the frequency of the PWM waveform. For
example, if the base clock rate is 32MHz and Timer Rate Scaling is 1/32, the effective clock rate is 1IMHz.

If Timer Period is set to be 10, then the output PWM frequency is 1/10 the effective clock rate of 1MHz (100kHz).
However, this is a poor example since if Timer Period is set to be only 10, the output PWM frequency can only be
varied in steps of 10%.).

Timer Rate Scaling: In conjunction with Timer Period, determines the base PWM frequency. Select from available
fractional timer rate multipliers to reduce the timer rate. Fractional rates of up to 1/8th the basic rate are possible. See
Texas Instruments documentation for more information.

Timer Source: Specifies the timer source. If you choose the same timer for each PWM, then you must also choose the
same timer rate and timer period for each PWM. Check with your MSP430 part description for the number of PWM
outputs that are available.

PWM for STM32
Target Category: STM32
Target Sub-Category: PWM

130 2022.1 Embed

Using the Target Support Blocks and Commands

PWIM

Rate Configuration

Output Trigger Setup

Channel Configuration

Chat Mode Polarity Idle

1. P | lactiveHi o~ | (0w
2 | Pk ~ | ActiveHi o~ (0
3 Pwil | lactiveHi o~ | (0w
4 | P ~ | ActiveHi o~ (0
B | Off ~

B o ~

Timer Unit M1~ Period. - [10000 1,600 kH: TRGO [to ADE, Tiktx Slave} | TIMx_EGR:UG v
Count Mode: Up W Frescale: |0 TRGOZ [ta ADCY TIM=_EGR:UG ~
Update Event Div:
Master/Slave Configuration Fault Handling
Coaunt bode: Marrmal Tirmer Clock, ~ [] &dd Block Enable Pin [Auto-Reenableft0E]
gLl VD giget: TREO-TIM15 Sync Master TRGI Breakl GPIO Input: | Unuzed | BreakZ GPIO Input: Unused w
Frescale: D1 Trigger Fiter: a Break1 Palarity: Low s | BreakZ Polarity: Low ~
ETRGPIO In: Urused Irvert ETR Extern Trigger Break Fiter El Break? Filter: El
Inactive on Break: Enable Idle level on Break: Enable

Pogitive Output

Megative Dutput

GFIO Out I Palarity Idle GFIO Out
Unused =~ | | |ActveHi =~ 0 ~| Unused -~
Unuzed -~ I Active Hi ~ | |0~ |Unused ~
Unuzed ~ | | ActiveHi | 0 | |Unused
Unuzed -~ I

Dead Tirne: EI

Deadtine Clk Prescale: w

1

Cancel Help

Channel Configuration

Channel 1-6: Specifies the channel to be configured. Each channel is associated with a compare register that is used to

create PWM waveforms.

Dead Time: Sets the amount of deadband between PWM switching to avoid drawing too much current in a power-

controlled circuit.

Deadtime Clk Prescale: Specifies the clock divisor for the deadtime. The divisor divides the timer clock to obtain a
deadtime clock. For more information, see the STMicroelectronics documentation for the device you are using.

Mode: Determines the action on compare register match. There are a number of modes from which to choose. Normally,

PWM mode is selected. For more information

, see the STMicroelectronics documentation for the device you are using.

Negative Output: Only channels 1 — 3 have negative output.

Idle: Specifies the output state on an occurrence of a break fault. Idle level
on Break must be enabled. For more information, see TIMx OSSI bit in the
STMicroelectronics documentation for the device you are using.

GPIO Out: Specifies the output pin on the chip for the given signal.

Positive Output: Only channels 1 — 4 have positive output.

Polarity: Determines if the active mode is High or Low. For more
information, see the STMicroelectronics documentation for the device you
are using.

Idle: Specifies the output state on an occurrence of a break fault. Idle level
on Break must be enabled. For more information, see TIMx OSSI bit in the
STMicroelectronics documentation for the device you are using.

2022.1 Embed

131

Using the Target Support Blocks and Commands

e GPIO Out: Specifies the output pin on the chip for the given signal.
Fault Handling

Timers can have zero, one, or two break units.

Add Block Enable Pin: Uses hardware faulting mechanism. When you activate Add Block Enable Pin, you invoke
breaking to perform analysis.

Auto-Reenable (AOE): Clears the break at the end of the PWM waveform.

Breakl GPIO In: Specifies the pin that will be used to invoke the break fault.

Breakl Polarity: Specifies the polarity of the break input signal.

Breakl Filter: Specifies the duration of the break input signal before the faulting is invoked.
Break2 GPIO In: Specifies the pin that will be used to invoke the break fault.

Break?2 Polarity: Specifies the polarity of the break input signal.

Break?2 Filter: Specifies the duration of the break input signal before the faulting is invoked.

Inactive on Break: When enabled and a fault occurs, each output line will be set to the inactive level (that is, the opposite
of the active level). When neither Inactive on Break nor Idle Level on Break is enabled, the GPIO outputs go into a Hi-
impedance state.

Idle Level on Break: When enabled and a fault occurs, each output line will be set to the idle level as specified per
channel under Positive Output and Negative Output. When neither Inactive on Break nor Idle Level on Break is
enabled, the GPIO outputs go into a Hi-Z state.

Master/Slave Configuration

Count Mode: Selects the counter behavior. For more information, see the STMicroelectronics documentation for the
device you are using.

ETR GPIO In: For external trigger connected to a GPIO pin of the device.
Input Trigger: Selects the source of the input trigger.

Invert ETR Extern Trigger: Inverts the ETR GPIO In trigger.

Prescale: Divides the rate of the input trigger.

Sync Master TRGI: You must select a TRGI mode under Count Mode. For more information, see the STMicroelectronics
documentation for the device you are using.

Trigger Filter: Specifies the duration of the trigger signal before the trigger event is asserted.
Output Trigger Setup

TRGO (to ADC, Timx, Slave): Used by the ADC to start a conversion sequence. It can also be used by another timer as
a trigger input.

TRGO2 (to ADC): Used by the ADC to start a conversion sequence.

Update Event Div: Divisor for the update event used to send update event triggers. For example, if you enter 1, the
trigger is sent out for every update event; if 2 it sends out every other update event, and so on. An update event occurs
when you get a counter overflow or underflow. For more information, see the STMicroelectronics documentation for the
device you are using.

Rate Configuration

Count Mode: Determines the counting mode. For more information, see the STMicroelectronics documentation for the
device you are using.

Period: Specifies the duration of a PWM waveform in units of timer ticks. In conjunction with the system clock selected for
the timer, the timer Prescale and Count Mode, determines the frequency of the PWM waveform. For example, if the base
clock rate is 72MHz and Prescale is 720 and the Count Mode is Up/Down (divide by 2), the effective clock rate is 50kHz.

132 2022.1 Embed

Using the Target Support Blocks and Commands

The frequency appears to the right of the Period. For more information, see the STMicroelectronics documentation for the
device you are using.

Prescale: Scales the timer source to a slower rate. Can be any value between one and 65,536. For more information,
see the STMicroelectronics documentation for the device you are using.

Timer Unit: Specifies the timer source.

2022.1 Embed 133

PWM for simulation

PWM for simulation for Arduino
Target Category: Arduino
Target Sub-Category: Sim

Description: The PWM for Simulation block is used during simulation to produce a fixed-point value between 0 and 1 that
is supplied to the PWM block.

Arduino Une Simulated PWM Properties ot

Arduino Pin: |3 e
Atmel Pin: PD3 (Arduino pin3)/Timer 2

Prescaler: 1 w | Frequency (kHz):62.500

Cancel e

Arduino Pin: Specifies the Arduino pin. Click here for Arduino pin mapping. This parameter is available only for Arduino
targets.

Atmel Pin: Indicates the Atmel pin that corresponds to the specified Arduino pin. This parameter is available only for
Arduino targets.

Prescaler: This parameter is ignored.

PWM for simulation for C2407, F281X, MSP430, STM32
Target Category: C2407, F281X, MSP430, STM32
Target Sub-Category: Sim

Description: The PWM for Simulation block is used during simulation to produce a fixed-point value between 0 and 1 that
is supplied to the PWM block.

When a PWM input is not connected, the corresponding output on the PWM for Simulation displays a 0 value.

Select Simulated PWM Unit >

Simulated Pt Lnit w

Cancel Help

Simulated PWM Channel/Unit: Specifies the PWM channel to be simulated.

2022.1 Embed 135

Using the Target Support Blocks and Commands

PWM for simulation for Linux Raspberry Pi
Target Category: Linux

Target Sub-Category: Sim

Description: The Linux RPi PWM for Simulation block is used during simulation to produce a fixed-point value between 0

and 1 that is supplied to the PWM block.

When a PWM input is not connected, the corresponding output on the PWM for Simulation displays a 0 value.

Select Linux Simulated PWM Unit >

Simulated P/t Lnit] e

Cancel Help

Simulated PWM Unit: Specifies the PWM channel to be simulated.

Quadrature Encoder
Quadrature Encoder for F281X

Target Category: F281X

Sub-Target Category: Quadrature Encoder

Description: The Quadrature Encoder block lets you read quadrature encoded counts. The Quadrature Encoder block

requires two pins to work.

The Quadrature Encoder block has three outputs. The topmost output is a 16-bit integer representing the number of
encoder counts. It cycles back to zero when it reaches 65,535. The second output is the direction, which is +1 for forward
and -1 for backward. The third output counts the index pulses when the corresponding parameter in the Quadrature

Encoder dialog box is activated.

Refer to the following table for information on encoder logic:

F2812 F2812
Encoder Channel A QEP1 QEP3
Encoder Channel B QEP2 QEP4
Encoder Index CAP3 CAP5

Cuadrature Encoder Properties

[Huadrature Pins: REP3-4 e

[Jinec/Dec Bev Count on Indes Pulsel

Cosl | [Eob

Inc/Dec Rev Count on Index Pulse: Enables the counting of index pulses.

136

2022.1 Embed

Using the Target Support Blocks and Commands

Quadrature Pins: Specifies the pins from which to read quadrature encoded counts. This parameter is not available for
MSP430 targets.

Peripheral Interrupt: Specifies the interrupt for which you want to look.

Quadrature Encoder for STM32
Target Category: STM32
Sub-Target Category: Quadrature Encoder

Description: The Quadrature Encoder block lets you read quadrature encoded counts.

Cuadrature Encoder Properties

Timer Unit; TIM1 ~
b ode: chl edge e

[Rezet Pasition Count an |ndex Pulze
[ine/Dec Bev Count on Index Pulse
[Irwert & input [Irwert B input

Input & Filker: MWaone o Input B Filker: ore e

o Pin Aszignments

A F&o e B: Pr3 w Indesx: Pal w

ok, Cancel Help

Inc/Dec Rev Counts on Index Pulse: Enables the counting of index pulses.

Input A Filter: Establishes the minimum duration that signal A stays transitioned in order to be considered a true
transition. Use this parameter to prevent erroneous transitions due to small amounts of noise. For more information, see
the SMT32 documentation.

Input B Filter: Establishes the minimum duration that signal B stays transitioned in order to be considered a true
transition. Use this parameter to prevent erroneous transitions due to small amounts of noise. For more information, see
the SMT32 documentation.

Invert A Input: Inverts the input on A.

Invert B Input: Inverts the input on B.

Max Pos: Indicates the maximum position.

Mode: Enables counting edges on a specific channel or both channels.

Mux Pin Assignments: Assigns a peripheral 1/0O port to a pin.

Reset Position Count on Index Pulse: Resets the position count to zero when an index pulse occurs.

Timer Unit: Specifies the timer unit to be configured.

2022.1 Embed 137

Using the Target Support Blocks and Commands

Read Target Memory
Target Category: MSP430

Description: The Read Target Memory block reads a specific memory address on the MSP430.

/O Port Write Properties

[0 Part Address:
Caneel Help

1/0 Port Address: Selects the memory address on the MSP430. Specify the address in hexadecimal notation.

SD16

Target Category: MSP430
Sub-Target Category: ADC

Description: The SD16 block lets you perform 16-bit analog to digital conversions. It uses sigma delta oversampling
technique to provide high-precision reading. Note that the effective sampling rate is:

SDCLK
oversample

Use the SD16 Config command to choose the hardware settings.

5016 Properties
Char; 0 ~| Gain 1
Ower Sampling R ate: el e

[nput Buffering:

[nterrupt Delay:
[Group With Mext Chan

ok, Cancel Help

Chan: Specifies the analog input channel.

Gain: Specifies the gain to be applied to the channel.

Group With Next Chan: Groups the channel with the next higher channel.
Input Buffering: Not available on this block.

Interrupt Delay: Not available on this block.

Over Sampling Rate: Specifies the oversampling rate. Generally speaking, higher rates are more accurate but take more
time.

138 2022.1 Embed

Using the Target Support Blocks and Commands

SD16A

Target Category: MSP430
Sub-Target Category: ADC

Description: The SD16A block lets you perform 16-bit analog to digital conversions. It uses sigma delta oversampling
technique to provide high-precision reading. Note that the effective sampling rate is

SDCLK
oversample

Use the SD16 Config command to choose the hardware settings.

SD16A Properties
Char 0~ Gain 1
Ower Sampling B ate: 1024 e
[nput Buffering: Dizabled w
Interrupt Delay: Intermupt on 4th sample
[] Group Wwith Mext Chan

Ok Cancel Help

Chan: Specifies the analog input channel.

Gain: Specifies the gain to be applied to the channel.

Group With Next Chan: Groups the channel with the next higher channel.

Input Buffering: Enables up to 1ma to drive the 1.2V internal Vref. This parameter is for external use.
Interrupt Delay: Specifies the number of interrupts to ignore before sampling the data.

Over Sampling Rate: Specifies the oversampling rate. Generally speaking, higher rates are more accurate but take more
time.

segmentLCD
Target Category: MSP430

Description: The segmentLCD block lets you write segment control lines on the MSP430.

Segment LCD Properties
Segment Section: 14-Seament Display,
Crigit Count: 1 e
Start Pozition: 1 w
ok LCancel Help

Digit Count: Controls the number of characters to be displayed.

2022.1 Embed 139

Using the Target Support Blocks and Commands

Segment Section: Specifies the segment to which to be written.

Start Position: Specifies the start position.

Serial UART Read

Target Category: AMD64, Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Linux Raspberry Pi, MSP430, Piccolo,
STM32

Target Sub-Category: Serial Uart

Description: The Serial UART Read block is a serial communication block for reading RS32 information. There is a 16-bit
element transmit and receive queue. There is an interrupt-based driver that places receive characters in a receive queue
and transmit characters in a transmit queue for servicing by the interrupt handler. You may read as many bytes as are
available in the receive queue. You can query the current receive queue length using the drop down setting in Serial
UART Read block.

Use Serial UART Config to configure the serial port.

Note: If you are performing HIL on the Arduino, you cannot use serial UART blocks in your diagram or include them in
Extern Definition blocks. This is because Arduino HIL communication relies on UART-0 on the target. Consequently, it is
necessary to remove all UART-0 usage in your diagram when using HIL to debug it.

F230X Serial Port Read Properties =
Port; A ~
Block Output: Data w
kL Fin: GRIOTF

Cancel Help

Block Output: Determines the type of information the block produces.

Data: Eight bits of data received.

Port Status: Actual bits returned by the status register on the peripheral device.

Receive Queue Empty: Outputs 1 if the queue is empty; and 0 if the queue is not empty.

Receive Queue Length: Specifies the length of the receive queue.

Receive Queue Max Length: Specifies the maximum length of the receive queue.

Receive Queue Overrun: Outputs 1 if the queue has been overrun; and 0 if the queue has not been overrun.
Transmit Queue Full: Outputs 1 if the transmit queue is full; and O if it is not.

Transmit Queue Length: Specifies the length of the transmit queue.

Transmit Queue Max Length: Specifies the maximum length of the transmit queue.

Mux Pin: Selects which pin a given function is on.

Port: Selects the Comm port on the peripheral device. Click here for Arduino pin mapping. Click here for Raspberry Pi pin
mapping.

Serial UART Write

Target Category: AMDG64, Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Linux Raspberry Pi, MSP430, Piccolo,
STM32

Target Sub-Category: Serial Uart

140 2022.1 Embed

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

Description: The Serial UART Write block is a serial communication block for transmitting RS32 information. This block
has two inputs: one is an enable pin and the other is for data. When the enable pin is high, the values entering the data
pin are presented to the transmit queue. When the enable pin is zero, values entering the data pin are ignored.

The serial port queue is interrupt driven. You may write as many bytes as are free in the transmit queue and the interrupt
handler will send the bytes out automatically. You can query the current transmit queue length using the Serial UART
Write block.

Use Serial UART Config to configure the serial port.

Note: If you are performing HIL on the Arduino, you cannot use serial UART blocks in your diagram or include them in
Extern Definition blocks. This is because Arduino HIL communication relies on UART-0 on the target. Consequently, it is
necessary to remove all UART-0 usage in your diagram when using HIL to debug it.

Arduing Serial Port Write Properties =
Part: o i
D ata Format: Binary o
L Fin: PO [Arduing i]

Cancel Help

Data Format: Selects the data format. Binary format sends the data in raw binary format. ASCII format sends the data in
human-readable format. This parameter is available only for Arduino targets.

Mux Pin: Selects which pin a given function is on.

Port: Selects the Comm port on the peripheral device. Click here for Arduino pin mapping. Click here for Raspberry Pi pin
mapping.

Set PWM Mode
Target Category: STM32
Target Sub-Category: PWM

Description: Each STM32 motor control timer (timers 1, 8, 20) has four PWM outputs with optional complementary
outputs with deadband. Normally, however, only three are used for 3-phase motor control. The Set PWM Mode block lets
you set the output mode of each pin. There are four output modes:

e HiZ: High impedence, or unconnected
e Force 0: Forced low to ground

e Force 1: Forced on to Vcc

e PWM: Controlled by PWM duty

This allows you to commute the phases of a BLDC motor based on Hall sensor input.

2022.1 Embed 141

https://www.raspberrypi.org/documentation/usage/gpio/

Using the Target Support Blocks and Commands

PWM Output Mode

Timer Unit: TIMT =~

CH1: HiZ w CHIM: HiZ w
CHz: HiZ e CH2ZM: HiZ e
CH3: HiF w CH3M: HiZ e
CH4: HiZ e CH4M: HiZ e

Canes| Help

CH1-CH4: Specifies the output mode.

CH1N-CH4N: Specifies the output mode.

Timer Unit: Specifies the timer unit to be configured.
Example

This example uses six Set PWM Mode blocks, one for each Hall sensor value per electrical rotation. Note that the blocks
have an enable pin, so they only execute if the input value is 1. The block face shows row 1=name, row 2 = setting of four
main outputs, row 3 = setting of four complementary outputs. For any given Hall phase, the Set PWM Modeblock will
configure the three motor phase half H-bridges so that 1 is off (0/0), 1 is tied to ground (0/1), and lis modulated via PWM
(pwm/pwm). The fourth column is hiZ/hiZ since it is unused.

ox1 p STM32 Set TIM1 Chan Output Mode:
Shase == |—>fenablepwm| 0| 0|hiZ
= b pwm| 1| 0hiZ
p STM32 Set TIM1 Chan Output Mode:
- hgxse? == [—>fenavlepwm| 0| 0|hiZ
P ’ pwm| 0] 1hiZ
— STM32 Set TIM1 Chan Output Mode:
ol == [—{{enable 0|pwm| 0|h\'Z
= s 0lpwm| 1|hiZ
i STM32 Set TIM1 Chan Output Mode:
o == |—{=fenable 0|pwm| 0|h\'Z
2 P 1[pwm| 0]hiZ
N — STM32 Set TIM1 Chan Output Mode:
ol == [—zfenavie 0| O|pwm]hiZ
= P 1|_0|pwm|hiZ
0x6 STM32 Set TIM1 Chan Output Mode:
D{_—‘}E« r == ——{[>=lenable 0| 0|pwm|h\'z
= 0| 1lpwmlhiz

Sigma Delta Filter Module
Target Category: Delfino, F280x, Piccolo
Target Sub-Category: ADC

Description: The Sigma Delta Filter Module block is a four-channel digital filter for current measurement and resolver
position decoding on newer Tl devices, including F2837x and F28004x. This block is used predominately in motor control
applications.

142 2022.1 Embed

Using the Target Support Blocks and Commands

Each input channel receives an independent delta-sigma modulator bit stream. The bit streams are processed by four
individually-programmable digital decimation filters. The filter set includes a fast comparator filter for:

¢ Immediate digital threshold compoarisions for over- and under-current monitoring
e Zeroes crossing detection

Additional information: Texas Instruments T|1 28377D Technical Reference Manual.

F28377D Sigrma-Delta Filter Properties

Llnit: 'l b Channel: 1 o SD-I D1[|:Iata]: UHUSEd "

Madulator Clk. M ode: data ztrobed on nizing clk edge £ SO C k) Ukuzed
[] Enable Modulatar Clock Failure Interrupt Flag

Data Filter
Enable Data Filker
Waord Size: 16-bit
Filter Structure: Sincfast w | [Syne with Pwdd 11 CMPC

Dversampling ratio: 256 w b ax Filter Yalue: +/-32767
[] Enable Data Fieady Acknowlege Interupt Flag
Comparatar Filker

Filter Structure: Sincfast ~

Oersampling ratio: ~ M ax Comparator Walue: 2048

Comparator High 'al: ICI [J Enable High al Interrupt
Cormparator Lo Val: D [Enable Low ¥al Intermpt

LCancel Help

Channel: Specifies the input channel.
Comparator Filter

Comparator High Val: Indicates the upper threshold for the signal. If you activate Enable High Val Interrupt and
the signal crosses the upper threshold, corresponding bits will be set in the Interrupt Flag (SDIFLG) register.

Comparator Low Val: Indicates the lower threshold for the signal. If you activate Enable Low Val Interrupt and the
signal crosses the lower threshold, corresponding bits will be set in the Interrupt Flag (SDIFLG) register.

Enable High Val Interrupt: Used in conjunction with Comparator High Val, it sets the corresponding bits in the
Interrupt Flag (SDIFLG) register when the signal crosses the upper threshold.

Enable Low Value Interrupt: Used in conjunction with Comparator Low Val, it sets the corresponding bits in the
Interrupt Flag (SDIFLG) register when the signal crosses the upper threshold.

Filter Structure: Indicates the filter structure to be used.

Oversampling Ratio: Lets you choose between 1 and 32. Higher values yield higher signal precision, but slower
overall sampling rates. The maximum comparator value is displayed with the specified ratio.
Data Filter

Enable Data Filter: Enables the data filter to monitor the bit stream.

Enable Data Ready Acknowledge Interrupt Flag: Sets the Data Ready Interrupt flag.

2022.1 Embed 143

https://www.ti.com/lit/ug/spruhm8i/spruhm8i.pdf

Using the Target Support Blocks and Commands

Filter Structure: Indicates the filter structure to be used.

Max Filter Value: Displays the maximum and minimum data filter values. This is a read-only parameter.

Oversampling Ratio: Lets you choose between 1 and 256. Higher values yield higher signal precision, but slower

overall sampling rates.

Sync with PWM11.CMPD: Synchronizes the oversampling ratio with the PWM.

Word Size: Selects the word size of the output.

Enable Modulator Clk Failure Interrupt Flag: Sets the Modulator Clock Failure Interrupt flag.

Modulator Clk Mode: Lets you choose the speed of the modulator clock. If you are using Manchester encoded data,

select No Clk.

SD1 C1 (clk): Chooses the pin that the clock comes in on.

SD1 D1(data): Chooses the pin that the data comes in on.

Unit: Specifies the unit number.

SPI Read
SPI Read for Arduino

Target Category: Arduino
Target Sub-Category: SPI

Description: The SPI Read block is a serial peripheral interface block for receiving data from certain hardware chips, like
analog I/O chips. Use SPI Config to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

Arduine 5P| Read Properties

Rx Bytes :

Inserted data bit order:

Result Data Type:

Cancel

1BYTE

MSBFIRST

unsigned char w

pod

ot

Help

Inserted data bit order: Sets the bit transmission order.

Result Data Type: Specifies the data type of the data value produced.

Rx Bytes: Indicates the number of bytes transmitted.

SPI Read for Linux Raspberry Pi

Target Category: Linux Raspberry Pi

Target Sub-Category: SPI

144

2022.1 Embed

https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb

Using the Target Support Blocks and Commands

Description: The SPI Read block is a serial peripheral interface block for receiving data from certain hardware chips, like
analog I/O chips. Use SPI Config to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

5Pl Read Properties

U rut: SFI0 w

Block, Output : [rata w

Fesulk Data Type: ungigned char e
ok Cancel Help

Block Output: Determines the type of information the block receives.

Data: Data bits received.

Port Status: Hardware status.

Receive Queue Empty: True if empty.

Receive Queue Length: Specifies the length of the receive queue.

Receive Queue Max Length: Specifies the maximum length of the receive queue.
Receive Queue Overrun: True if queue has overflow.

Transmit Queue Full: True if full.

Transmit Queue Length: Specifies the length of the transmit queue.

Transmit Queue Max Length: Specifies the maximum length of the transmit queue.

Result Data Type: Specifies the data type of the data value produced.

Unit: Specifies the unit number.

2022.1 Embed 145

https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb

Using the Target Support Blocks and Commands

SPI Read for C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32
Target Sub-Category: SPI

Description: The SPI Read block is a serial peripheral interface block for receiving data from certain hardware chips, like
analog 1/O chips. Use SPI Config to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

SPI Read Properties

Unit. | SPI& v | Recsived Bits D

Black Output: [rata A
Drata bits bo extract from received bits: w
L5E of extracted data: 0 e
Result Data Type: SCALED _IMT -

Radix Paint: |1 “ | Word Size: |16 w

k. Cancel Help

Block Output: Determines the type of information the block receives.

Data: Data bits received.

Port Status: Hardware status.

Receive Queue Empty: True if empty.

Receive Queue Length: Specifies the length of the receive queue.

Receive Queue Max Length: Specifies the maximum length of the receive queue.
Receive Queue Overrun: True if queue has overflow.

Transmit Queue Full: True if full.

Transmit Queue Length: Specifies the length of the transmit queue.

Transmit Queue Max Length: Specifies the maximum length of the transmit queue.

Data Bits to Extract from Received Bits: Sets the number of data bits, which can be smaller than the number of
received bits. The received bit count is set in the SPI Config dialog box.

LSB of Extracted Data: Sets the least significant bit of data, allowing you to locate the data in the received word.
Radix Point: Sets the radix point.

Received Bits: Indicates the number of bits to be received. This value is set in SPI Config block.

Result Data Type: Specifies the data type of the data value produced.

Unit: Specifies the unit number.

Word Size: Specifies the word size.

146 2022.1 Embed

https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb

Using the Target Support Blocks and Commands

SPI Write
SPI Write for Arduino

Target Category: Arduino
Target Sub-Category: SPI

Description: The SPI Write for Arduino block is a serial peripheral interface block for transmitting data to an Arduino
board. The SPI queue is interrupt driven. You can write as many bytes as are free in the transmit queue and the interrupt
handler will send the bytes out automatically. You can query the current transmit queue length using the SPI1 Read for
Arduino block.

Use SPI Config for Arduino to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

Arduino 5P1 Write Properties ot
Tx Bytes: 1BYTE
Inserted data bit order: MSBFIRST
Slave-Select Arduino Pin:
Slave-Select after send: Low w
Input Type: unsigned char ~
Cancel Help

Input Type: Specifies the input data type.
Inserted data bit order: Sets the bit transmission order.

Slave Select/Arduino Pin: Selects the pin for the Slave Select signal. The default Slave Select pin is PB2 (Uno) and PBO
(Leonardo and Mega). You can verify the default Slave Select pin in the SPI Config for Arduino dialog box under Mux Pin
Assignment. Click here for Arduino pin mapping.

Slave Select after send: Specifies the SS pin state upon completion of the byte transfer. The SS pin is set to LOW at the
beginnning of the transmission. It is set to the selected value after the transmission ends. In this way, you can send multi-
byte words by keeping the SS pin LOW until the final byte.

Tx Bytes: Indicates the number of bytes transmitted.

SPI Write for Linux Raspberry Pi
Target Category: Linux Raspberry Pi
Target Sub-Category: SPI

Description: The SPI Write for Linux Raspberry Pi block is a serial peripheral interface block for transmitting data to a
Raspberry Pi board. The SPI queue is interrupt driven. You may write as many bytes as are free in the transmit queue
and the interrupt handler will send the bytes out automatically. You can query the current transmit queue length using the
SPI Read for ARM-Linux block.

2022.1 Embed 147

https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb

Using the Target Support Blocks and Commands

Use SPI for ARM-Linux Config to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

SPI Write Properties

1 it SPIO w
Slave Select After send: L0k o
[hput Type: unzigned char W

Cancel Help

Input Type: Specifies the input data type.

Slave Select After send: Specifies the SS pin state upon completion of the byte transfer. The SS pin is set to LOW at the
beginnning of the transmission. It is set to the selected value after the transmission ends. In this way, you can send multi-
byte words by keeping the SS pin LOW until the final byte.

Unit: Specifies the unit number.

SPI Write for C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32
Target Category: C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32
Target Sub-Category: SPI

Description: The SPI Write block is a serial peripheral interface block for transmitting data to certain hardware chips, like
analog I/O chips. The SPI queue is interrupt driven. You may write as many bytes as are free in the transmit queue and
the interrupt handler will send the bytes out automatically. You can query the current transmit queue length using the SPI
Read block.

Use SPI Config to configure the hardware settings.

Additional information: Using SPI slave to communicate between two Launchpads.

SPI Write Properties

Unit: | SPIB w [] Usge Enable Fin
Tranzmitted Bits:

D ata bitg ko ingert to T ward:

L5E of inzerted data:

0 L
Walue OFRed to Tx word:

[nput Type: SCALED _IMT

Radix Point: | 1 | whord Size; |16 W

Cancel Help

Data Bits to Insert to Tx Word: Specifies the number of data bits to insert into the transmitted word. Normally this is the
same size as the transmitted word; however, it can be smaller if the data field is smaller than the transmitted bits. The

148 2022.1 Embed

https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb
https://community.altair.com/community?id=community_question&sys_id=a0b640ba1b2bd0908017dc61ec4bcbeb

Using the Target Support Blocks and Commands

transmitted word size is set the SPI Config block. For instance, if you are sending 12 bits of DAC data, in a 16-bit word,
set this value to 12, and choose an LSB offset if the 12 data bits are left shifted.

Input Type: Specifies the input data type.

LSB of Inserted Data: Sets the least significant bit of data, allowing you to position the data in the transmitted word.
Radix Point: Sets the radix point.

Transmitted Bits: Sets the number of bits to be transmitted.

Unit: Specifies the unit number.

Use Enable Pin: Produces an enable input pin to the block. If the value on the pin is zero, block operation will be
suppressed.

Value ORed to Tx Word: Provides a value that will be logically OR’ed to the transmitted word. This can be useful to set
control bits outside of the data bits in the transmitted word. If left to 0, this will have no effect.

Word Size: Specifies the word size.

UDP Read

Target Category: Arduino

Target Sub-Category: |0oT > ESP8266WiFi

Description: The UDP Read block reads data from the UDP bus.

Arduino UDP Read Block Properties >

IP address: | 192, 168. 1. 100 |

UDP port: 5500
Data Pins: 1 | Packet Byte Size:

Data Element Type

Piri: 1 ~ | Type: |signed 2-byte w
Radix Point: 4 ~ Word Size: 16 o
Byte offset into packet: 0 I
Pack Offsets Set All Pin Types = Pin 1
Cancel Help

Data Element Type: Controls the data type of each output pin and the offset into the packet.

Data Pins: Specifies the number of input pins (128 max).

IP Address: Specifies the IP address of the target.

Pack Offsets: Iterates over all the pins and assigns consecutive ascending offsets to each pin.

Packet Byte Size: Specifies the size of the packet to be read (512 bytes max).

Set All Pin Types = Pin 1: Sets the data type of all pins to be the same as pin 1, and then performs a Pack Offset.

UPD Port: Specifies the port to exchange data. It is recommended to use ports greater than 49151.

2022.1 Embed 149

Using the Target Support Blocks and Commands

UDP Write

Target Category: Arduino
Target Sub-Category: 10T > ESP8266WiFi

Description: The UDP Write block writes data to the UDP port on the Ethernet. The top “Tx” pin must have a value of 1
for the block to send data. The subsequent pins are data pins. The values presented on the data pins are sent to
the UDP port.

Arduino UDP Write Block Properties *

IP address: | 192, 168. 1. 100 |

Data Pins: 1 + | Packet Byte Size:

Data Element Type

Fin: 1 ~| Type: |8-byte double ~
Radix Point: 4 ~ Word Size: 16 o
Byte offset into packet: 0 I
Pack Offsets Set All Pin Types = Pin 1
Cancel Help

Data Element Type: Controls the data type of each output pin and the offset into the packet.

Data Pins: Specifies the number of input pins (128 max).

IP Address: Specifies the IP address of the target.

Packet Byte Size: Specifies the size of the packet to written (512 bytes max).

Packet Offsets: Iterates over all pins and assigns consecutive ascending offsets to each pin.

Set All Pin Types = Pin 1: Sets the data type of all pins to be the same as pin 1, and then performs a Packet Offset.

UDP Port: Specifies the port to exchange data. It is recommended to use ports greater than 49151.

Target Interface

Target Category: Arduino, C2407, Cortex M3, Delfino, F280x, F281X, Linux AMD64 and Raspberry Pi, MSP430, Piccolo,
STM32

Target Sub-Category: Target Interface

Description: The Target Interface block lets you validate and tune your control algorithm as it executes on a target
device. When you simulate the diagram, the Target Interface block automatically downloads the OUT or ELF file to the
target and begins executing the code on the target. While the target executable runs, you can communicate with the
target via the inputs and outputs on the Target Interface block. Note the following:

e Because the target always runs in real-time, you should configure the diagram to run in real-time mode when
communicating with the target. This way, Embed is in sync with the target.

150 2022.1 Embed

Using the Target Support Blocks and Commands

e If you are performing HIL on the Arduino, you cannot use serial UART blocks in your diagram or include them in
Extern Definition blocks. This is because Arduino HIL communication relies on UART-0 on the target.
Consequently, it is necessary to remove all UART-0 usage in your diagram when using HIL to debug it.

To probe stack and heap usage, use the Get Target Stack and Heap command.

5TM32 Target Interface Properties >

Target Execution File:

C:\alkairsE mbed20204cqmapl D elf |

Block Title:
map1D.elf T arget Board:

T arget Frequency [MHz]
72

Connectors:
Sample Rate [Hz): Inputs:
[]Eeep Target Running
Shaow CPU Utilization
[]5ync Target to Thiz Block

Embedded Target Suppart *erzion
Altair Embed suppart for ST 32 +170 Build 2376

—_

—_

Outputs:

Cancel Help

Block Title: Indicates an optional name that appears on the Target Interface block.

Connectors: Specifies the number of inputs and outputs on the compound block from which the code was generated.
Embedded Target Support Version: Indicates the version number of the driver board in use.

Keep Target Running: Allows the embedded target application to continue running even after you quit Embed.
Sample Rate: Specifies the sample rate at which the embedded algorithm should run. The default is 10kHz.

Show CPU Utilization: Creates an extra output that displays the CPU utilization on the target while your target execution
file runs. CPU usage only works with Timer 2 on Delfino, F280x, F281x, and Piccolo targets.

Sync Target to this Block: Synchronizes the target to your simulation. It waits until the data from the PC is presented,;
then the PC waits for the target to operate for one timer interrupt interval. This parameter is not available for Arduino or
Linux targets.

Target Board: Specifies the target card if multiple cards are supported. Board numbers are zero through three.

Target Execution File: Indicates the complete pathname of the OUT or ELF file previously generated. If you are not sure
of the pathname, click on the ... button to locate the target execution file.

Target Frequency (MHz): Indicates the speed of your CPU. Embed needs to know the speed for the timing to be
accurate.

2022.1 Embed 151

Using the Target Support Blocks and Commands

Watch Dog

Target Category: C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo

Description: The Watch Dog block enables a hardware watchdog. In an embedded system, it's customary to have a
hardware watch dog. The watch dog can force an automatic system restart when the system begins to misbehave.

Watchdog Properties

[]Usze Input To Enable

Time Until Reset: 29g453 o~ Mmiliseconds

0k, LCancel Help

Time Until Reset: Sets the interval for which the Watch Dog block expects input.

Use Input To Enable: Indicates that the block has enabling input that you can use to suppress sending input to the watch
dog, which will force a restart.

Web Server
Target Category: Cortex M3

Description: The Web Server block automatically generates code to create a web page running on your embedded target
that displays information from your Embed diagram running on the target. You can take data entered on the web page
and use it in the Embed diagram running on the target. You can also choose whether to update the web page data
automatically at a set rate or have users click a button to update a control on the web page.

The Web Server block can create a complete web page automatically or let you build a custom web page with graphics
and place Embed controls where you like on the page.

152 2022.1 Embed

Using the Target Support Blocks and Commands

An automatically created web page looks like this:
Vs e~ S ——————

« C A o000 (8

Web Server Powered by Embed

Mot R0
P Send O v | w0 e Somd
- Vo Sgead (ot

—_———

\we Sgend .
e

o pagr show) rosmmmscaton Yo your Coacone bosed
e e St hons 0 sond At b e s d
Pross "Ont e gt v fome Be b d

Ot Aot mtomutionlty evary | second

Configuring a sample Web Server block

To create a web page, first insert a Web Server block into your diagram.

Hin M3 web Dut’-

By default, the Web Server block has one input and one output.

To configure the Web Server block

1. Click Edit > Add Connector or| - to add input and output pins to the block.

2. Click the left side of the block to add input pins and the right side to add output pins.

3. Right-click Web Server to display the Web Interface Properties dialog box to configure your web page:

2022.1 Embed 153

Using the Target Support Blocks and Commands

-

Web Interface Properties

. ==

Data Transfer Y ariables

~

Fin Label Type In/ Out Control Pin Defaultalue “web Page Label Configuration

in int Input Edit 1 0 in

ot it Cutput Edit 1 0 out

“Web Interface Source

@ Generate web Page Yiew Source Code I

) Usze Existing Web Page

() Use Existing Web Site I
Window Header Welcome to the Concerto Micro Web Serverl IP Address 169 . 284 . 254 | 1E9
Page Header Web Server Powered by VisSim Subket Mask 285 . 285 0
[Get [ata Automatically every 1 | second(s) MALC Addies: &8 F2 00 an
[] Use Buffers for Plats

Sample evern 0 zimulation step(z] up to o zamples
0k l [Cancel] [

4. Make the appropriate selections. Descriptions of the dialog box selections are in the next several sections.

5. Click OK, or press ENTER.

Configuring input and output connector pins

The input and output connector pins are listed in the Data Transfer Variables box in the Web Interface Properties dialog

box.

To edit any property of a pin, double click it.

Pin Labels, Type, In/Out, and Pin

Pin labels appear on the Web Server block in Embed.

154

2022.1 Embed

Using the Target Support Blocks and Commands

Web Interface Properties

Data Transter Variables

Pin Label Tupe In / Out Pin

ode String Input 1

in int Input 2

Speedimel.. double Input 3

Speediplot] double Iriput 4 MDI:'E LE D

LED int Output w1

SpeedCmd double Output 2 .

out double Output 3 In b SDEEd Cmd
Speed|meter]

oLt

Speed]plat]

The Type column refers to the data type of the pin. There are four data types for connector pins: char, int, double, string.

If you enable View > Data Types, connector pins are colored according to the following table.

Data Type Connector Pin Color
char Green

int Green

double Red

string Purple

The In/Out column indicates whether the connector pin is an input pin or an output pin.

The Pin column indicates the number of the pin. Pin numbers start at 1, which corresponds to the top connector pin.

Control

The Control column lets you create different controls or “widgets” that will be displayed on the web page. The control
options are Checkbox, Edit, Meter, Plot, Slider, and Text. When you double-click a control option, a drop-down menu
appears with your control choices.

Web Interface Properties

Data Transfer Variakles

Fin Lakel | Type | In/ Ot | Caontral | Pin| DefauItVaIue| Web Fage Le
tode String Input IEdit LI 1 0 hkode
in int Input 0 in
Speed(meter) double Input 0 Motor Speed
Speed(plot) double Input 0 Actual Speed
LED int Output 0 GFIOCE
Speedcmd double Output 0 Motor Speed
out double Cutput 0 out
Control Type Description
Checkbox Input Send a 0 or 1 to the target
Edit Input and Send the text or numeric data from the web page to
Output the target or receive the data from the target and
display it on the web page
Meter Output Draw a horizontal thermometer on the web page

2022.1 Embed 155

Using the Target Support Blocks and Commands

Plot Output Plot the time history of a variable on the web page
Slider Input Dynamically modify a value
Text Input Display text on the web page

Web Server Powered by Embed

Mode GP1OCSE
Oot | Sersodess ¥ Send 00 110 the bowrd

St up meter prepeten i n
Ueges Bonrnt L |
Lows Rinret

souces [
S o Cokn -

[o) | Cexe

Right click on the meter e ——
bar and plot to access = | [\l ‘i EE |
dialog boxes to change AN)
their appearances. A AR

- (

Cowmn fPw Vo Wt Page Latel Comtgemns
(= ' Mode

- ¢ -

-,\
o

\
 Set vp piot progertes @ ¥
Ugger Bourd §
Lower Bournd 0
Nober of Ports 100
Tiace Type e 4
e e L.
Tiace Coler - 8 o . o ‘e Smerce Cove
§ackgound Color Ll |

=i |
rasgorcCo [N CUmtemgenin | = |

T Wt [74 oo i v b it

¥ label Tew Popn e [0 S Font 3y et Caene L

¥ Label o 17 Gt Dm ity w1 s Wokmen [FOFT PP

PotSows Walg 0 X 1% | | o | we |
¢ GadLnes

Web Page Labels

The Web Page Labels column lets you create labels for the controls that will be displayed on the web page. To edit a web
page label, simply click the mouse over the label. A box appears around the label to indicate you are in edit mode.

Web Interface Properties

Data Transfer Variables

Fin Label ‘ Type ‘ In/ Out ‘ Contral | Pml Defaull\/a\uel Web Page Lahel ‘ Configurat
hiode String Input Edit 1 0 [Mode

in int Input Edit 2 0

Speedimeten double Input Meter 3 0 Motor Speed U00:L:0:0
Speediplot) double Input Plot 4 0 Actual Speed ooz
LED int Output Check 1 0 GFIOCE Send 0or
Speedcmd double Output Slider 2 0 Motor Speed Com... U100L:0:2
out double Output Edit 3 0 out

156 2022.1 Embed

Using the Target Support Blocks and Commands

Web Server Powered by Embed

GPIOC6
¥ Send 0 or 1 to the board

Motor Speed Command

1

{

CEBIATIINS
NI CS5B 12840 F 0T
Send 8 0r 19 e bosed

19000510

0 Motor Speed Com

Default Value

The Default Value column indicates the initial value to display on the web page before data is sent.

Configuration

The Configuration column lets you choose range and colors for the web page controls that need them.

Configuring the Web Address

You configure the web page address in the lower portion of the Web Interface Properties dialog box.

Window Header |Welcome to the Concerta Micro Web Senver! IF Address 169 . 284 . 254 . 169
Fage Header “Weh Server Powered by Embed Subnet kMask 266 26 . 0 . D
[v GetData Automatically every I 1 second(s) MAC Address IAE |E3 IFE IEIEI IEIEI IBIJ

[~ Use Buffers far Flots
Sample every I 1] simulation step(s) up to I 0 samples

(0] | Cancel | Help

2022.1 Embed 157

Using the Target Support Blocks and Commands

IP Address and Subnet Mask

You must select an IP address so you can find the web page on the internet or LAN. Make sure the IP address you
assign to the target board is unique on your network. You must also set the Subnet Mask. If accessing on a LAN, be sure
to use the proper subnet so that the page can be found. You may need to consult your Network Administrator for your IP
address and Subnet Mask.

MAC Address

The MAC Address is a label on your target board. Make sure the address you enter matches the address on the board.

Automatic Data Update

When you activate Get Data Automatically, it allows automatic update of diagram values to the web page and will take
data from the page and send it to the diagram at the specified interval. You must also activate the corresponding Get
Data Automatically parameter on the web page.

Window Header

The Window Header specifies the title in the Browser tab or window.

Page Header

The Page Header indicates the title on the web page.

Choosing the Web Interface Source

The Web Interface Source section gives you the option to have Embed generate the entire web page, or integrate
Embed Web Controls into your custom web page along with your graphics. Embed supports a flash-based file system that
lets your web page use individual graphic images like PNG and GIF, which can be displayed on your web page.

~ wi'eb Interface Source

(& Generate Web Page “iew Source Code

(" Lge Existing Web Paga I |

(= Lze Existing Web Site I

Generate web page

If you choose this parameter, Embed generates an INDEX.HTM file and places it in the code generation directory
(<install-path>\cg). Typically, you start by creating a web page using Generate Web Page because it provides a basic

158 2022.1 Embed

Using the Target Support Blocks and Commands

script to communicate with the embedded web server. You can view the generated source code by clicking View Source
Code.

Use existing web page

If you choose this parameter, you must specify the path to your existing single web page. You use Use Existing Web
Page when you want to edit the web page created with Generate Web Page.

Use existing web site

If you choose this parameter, you can create your own web site with several linked web pages with your own controls. To
do so:

e There must be an INDEX.HTM
e You must specify the path to the directory containing INDEX.HTM

All the files in the above specified directory and subdirectories will be included in the generated C code.

Using the Web Server block in a diagram

A sample diagram — WebTest05 — with a Web Server block is included under Examples > Embedded > CortexM3 >
Webserver.

ARM Cortex M3 Config: F28M35H52@100MHz
T ¥DS100v2 USH

IMode LED——»{ not | CortexM3-PCE |

[in Speed Cmid
M3 web
Speed{meter]
out—
Speed(plat]
ud |4 2]

The Web Server block is treated like any other block in the Embed diagram. It takes input values and supplies output
values. The Web Server block operates asynchronously: it posts its input data to the page but does not wait for a
response. The output data it provides on the output pins is the contents of the local buffer from the last asynchronous data
received from the page.

In the sample diagram above, connectors are color coded to data type:
Green: integer

Purple: string

Red: floating point

The diagram generates some simple data merely to exercise the control on the web page.

“on

The Mode input is a string that updates dynamically. The “in” input is an edit display that will show the integer numeric
value of the square wave input. The Speed (meter) input is identical to the Speed (plot) input and is a sin squared to
produce a value varying between zero and one scaled by the Speed Cmd slider output and a gain of two. The LED output
is a check box with value zero or one. This is connected to GPIO PC6 which is wired to an LED on the Texas Instruments
Control card. This lets you turn the LED on and off from the web page. The “out” pin represents the floating-point value
entered into the Out control on the web page. It is not used in this sample diagram.

2022.1 Embed 159

Using the Target Support Blocks and Commands

When you compile the diagram, the web page below is automatically generated. Using the web page, you can observe
and control your application on the target board.

e 39 S Corv +.
« o+ ca BWesesn _) ’ — - Gi=m
¥ gve G gt fam .. 61 weden B Googe (2 Googm g v Vi2 M Gl rbcn (11 00 Googe Gt = by |0 yar b (40 s vewe G B vatas feance = 3 Cxtr Bockmarts

e

Thee punte o & ¢ o atam b vour C oo bomd
Tt e St Do 10wl St w0 B Boind

h’“hithﬁlﬂ

Cugreghe € 2054

Using the Target Config blocks

The Target Config block configures the diagram for a specific embedded target. There can only be one Target Config
block in a diagram.

160 2022.1 Embed

Using Arduino Config

Target Category: Arduino

Using the Target Support Blocks and Commands

The Arduino Config lets you configure settings for the Arduino. After you enter the settings, an Arduino Config block is

inserted into the diagram.

Cancel

Arduino Properties x
CPU: I o
CPU Speed (MHz): 16 w
kdultiple of Crostal Freo; |'I:-: e |
Wirtual Comport [COR
Communications Paort [COM1] R |
Caontral Clk. Src: |1E bit timer 1 e |
Contral Clk. Prescale: |1 v |
Chil Clk Count Mode: | Up » |
Boat |nit Code
DLLASD Yersion:

Altair Embed suppart far Arduino 170 Build 2376

Boot Init Code: Specifies user C code to initialize the chip.

Control Clk Prescale: Chooses the prescale factor for the PWM based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Chooses periodic sampling interrupt source for the main control loop in Embed.

CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.

CPU Speed: Indicates the speed of the CPU.

Ctrl Clk Count Mode: Chooses the count mode for the PW-based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

Virtual Comport: Chooses the serial communications port that corresponds to your Arduino. If you do not know the
correct serial port number, start the Arduino IDE and click Tools > Port to find it.

2022.1 Embed

161

Using the Target Support Blocks and Commands

Using ARM Cortex M3 Config

Target Category: Cortex M3

The ARM Cortex M3 Config lets you configure settings for the ARM Cortex M3. After you enter the settings, an ARM
Cortex M3 Config block is inserted into the diagram.

ARM Cortex M3 Properties *

CPLU: F28h 35H52 ~
[] Enable Interactive Peripheral Mode
[Preload Out File | |

CPU Speed [MHz): 100 w Clock Source: External Dscillatar
tultiple of Crystal Freo: 10 w~ #CLK on GRIO38 ~

HSPCLE: | S¥SCLEA 100 MHz LSPCLE: | SYSCLE/d 25 MHz

JTAG connection;

TI#D5100v2-M3 USE A4
Cantral Clk Sre: 32 bit timer 2 ~ EPwWM Interupt Event: CTR=0 ~
Caontral Clk Prescale: 1 W Chl Clk. Count Mode: Do w

[Use Custom Linker Crnd File:

DLLAD Wersian:
Alkair Embed support for Cortexkd 3 w160 Build 2376

Cancel Help

Clock Source: Chooses the hardware source for the system clock.

Ctrl Clk Count Mode: Chooses the count mode for the PWM-based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Prescale: Chooses the prescale factor for the PWM based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Sets the periodic sampling interrupt source for the main control loop in Embed.
CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.
CPU Speed: Indicates the speed of the CPU.

Enable Interactive Peripheral Mode: Causes a pre-configured OUT file (whose only task is to read and write peripheral
data) to be downloaded to the target. All ADC, Quadrature Encoder, PWM, and GPIO blocks in the diagram will read and
write actual values from the on-chip peripherals at the speed of the JTAG (~150Hz).

EPWM Interrupt Event: Chooses PWM event if PWM interrupt is selected as the Control Clk Src.
HSPCLK: Drives the ADC sample timer.

JTAG Connection: Indicates the JTAG driver to be used for HotLink communication.

LSPCLK: Drives the serial and SPI ports.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

Preload Out File: Lets you debug the slave core while loading your application in the master core.

F2812 F2812
Encoder Channel A QEP1 QEP3
Encoder Channel B QEP2 QEP4

162 2022.1 Embed

Using the Target Support Blocks and Commands

Encoder Index CAP3 CAP5

Use Custom Linker Cmd File: Overrides using the default linker command file. When activated, you must enter the path
to your custom linker command file in the corresponding text box. If there are spaces in the path, enclose the path in
double quotation marks.

Using the Linux Config
Target Category: Linux AMD64 and Raspberry Pi

The Linux Config lets you configure settings for the AMD64 and Raspberry Pi. After you enter the settings, a Linux Config
block is inserted into the diagram.

Linux Config uses TCP/IP to connect to an AMDG64 or Raspberry Pi device. A daemon runs on the Raspberry Pi for this
purpose. The Linux Config uses these ports:

Protocol Port

TCP 50009
57893

UDP 50002
50003
57892

2022.1 Embed 163

Using the Target Support Blocks and Commands

Linux Properties >
CPLU: RFi 14F s w
CPU Speed [MHz): 700

TCPAP Connechion:

Metwork [nterface:; Refresh
Ethermet: 10.70.113.81 -
Target [Ps:
Target 05
buzter »

Target Tazk Priority &zsignment;

Diagrarn T ask Priority: [1-99]; 1 = Highest Pricrity
Idlz Loop Task F'rin:nrit_u: [1-99]: 1 = Highest Pricrity

DLLASD Yersion:
Altair Embed zuppart far Linus «170 Build 2376

Cancel Help

CPU: Sets the CPU type for the Raspberry Pi or AMD64.

CPU Speed: Indicates the speed of the CPU.
Target Task Priority Assignment

Diagram Task Priority: Sets the Linux priority of diagram task execution. Specify the priority as an integer in the range of
1 - 99, where 1 is the highest priority.

Idle Loop Priority: Sets the Linux priority of idle loop execution. Specify the priority as an integer in the range of 1 — 99,
where 1 is the highest priority.
TCP/IP Connection

Network Interface: Chooses the network interface.
Refresh: Reloads the current IP of the host machine and connected Raspberry Pi or AMD64.
Target IPs: Chooses the IP of the connected Raspberry Pi or AMD64.

Target OS: Chooses the operating system of the connected Raspberry Pi or AMD64. The supported operating system for
Raspberry Pi is Buster; the supported operating system for AMD64 is Xenial Xerus.

164 2022.1 Embed

Using the Target Support Blocks and Commands

Using the F240X Config

Target Category: F240X

The F240X Config lets you configure settings for the F240X. After you enter the settings, an F240X Config block is
inserted into the diagram.

F240% Properties x
CPL: e
CPU Speed [MHz): 40 w
kdultiple of Crostal Freo; |4:-: e |
JTAG connection;
Contral Clk S ||:MP'1 INT o |
Control Clk. Prescale: | ME w |
Chil Clk Count Mode: | Up » |
B oot |nit Code
DLLASD Yersion:

Altair Embed support for C2407 »170 Build 2376

Cancel Help

Boot Init Code: Specifies user C code to initialize the chip.

Control Clk Prescale: Chooses the prescale factor for the PWM based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Chooses periodic sampling interrupt source for the main control loop in Embed.
CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.
CPU Speed: Indicates the speed of the CPU.

Ctrl Clk Count Mode: Chooses the count mode for the PWM based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

JTAG Connection: Indicates the JTAG driver to be used for HotLink communication.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

Using F28X Config

Target Category: Delfino, F280x, F281X, Piccolo

The F28x Config block lets you choose the setting for the Delfino, F280X, F281X, and Piccolo. After you enter the
settings, F28x Config block is inserted into the diagram.

2022.1 Embed 165

Using the Target Support Blocks and Commands

F28x Config for Delfino, F280X, and Piccolo

F28x Properties et

CPL:
[] Enable Interactive Peripheral Mode

CPU Speed [MHz]: 100 w Clock Source: Internal Ozcillator 1
kultiple of Crostal Freo; 10% L AU=OSCCLE = nternal Ozcillatar 2 b

HSPCLE: | S¥SCLEAM 100 MHz LSPCLE: |S¥SCLEM 25 MHz

JTAG connection:

TI=D5100w2 USE w
Contral Clk Src: 32 bit tirmer 2 w EP'WwW A Interrupt Event: CTR =0 w
Control Clk. Prescale: 1 w Ctrl Clk. Count M ode: Do e

[] Use Custam Linker Cmd File:

DLLAD Yersion:
Altair Embed support for F280 +170 Build 2376

Cancel Help

Auxiliary Oscillator Clock: Chooses the clock for the USB. This parameter is available for newer Texas Instruments
devices, like the F280049. Refer to the Texas Instruments specification sheet for more details.

Clock Source: Chooses the hardware source for the system clock.

Control Clk Prescale: Chooses the prescale factor for the PWM-based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Chooses periodic sampling interrupt source for the main control loop in Embed.
CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.
CPU Speed: Indicates the speed of the CPU.

Ctrl Clk Count Mode: Chooses the count mode for the PWM based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

Enable Interactive Peripheral Mode: Enables Embed to read and write GPIO, ADC, PWM, and quadrature encoder data
on a target MCU from Embedded blocks in an Embed diagram. This mode can only support 150 Hz data rate.

EPWM Interrupt Event: Choose PWM event if PWM interrupt is selected as the Control Clk Src.
HSPCLK: Drives the ADC sample timer.

JTAG Connection: Indicates the JTAG driver to be used for HotLink communication.

LSPCLK: Drives the serial and SPI ports.

Preload Out File: If you have a dual-core target, Preload Out File will download and start an executable image to the
master core. This parameter is available for dual-core devices.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

166 2022.1 Embed

Using the Target Support Blocks and Commands

Use custom linker cmd file: Overrides using the default linker command file. When activated, you must enter the path to
your custom linker command file in the corresponding text box. If there are spaces in the path, enclose the path in double
guotation marks.

F28x Config for F281X
F281x Properties et
CPU: —
CPU Speed [MHz): 150 e
Fultiple of Crostal Frea: |5:-: R |
JTAG connection;
TI=D5100%2 ISB v|
Contral Clk, Sre; |32.|:.it birne 01 - |
Control Clk. Prescale: |1 e |
Chil Clk Count Mode: |D.3wn v |
Boot Init Code
DLLAS=D Yersion:

Altair Embed suppaort for F281% w170 Build 2376

Cancel Help

Boot Init Code: Specifies user C code to initialize the chip.

Control Clk Prescale: Chooses the prescale factor for the PWM based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Chooses periodic sampling interrupt source for the main control loop in Embed.
CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.
CPU Speed: Indicates the speed of the CPU.

Ctrl Clk Count Mode: Chooses the count mode for the PWM based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

JTAG Connection: Indicates the JTAG driver to be used for HotLink communication.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

Using Generic MCU Config

The Generic MCU Config lets you choose the setting for a generic MCU. After you enter the settings, a Generic MCU
Config block is inserted into the diagram.

2022.1 Embed 167

Generic MCU Properties et

CPL: | G eneric MCL v

CPU Speed [MHz):
Fultiple of Crostal Frea:

JTAG connection;

Contral Clk Src:
Control Clk. Prescale:

Chrl Clk. Count Mode:
Boaot Init Code

DLLASD Yersion:
Altair Embed suppart for Genenic MCU 170 Builc

Cancel Help

Boot Init Code: Specifies user C code to initialize the chip.

Using the Target Support Blocks and Commands

Control Clk Prescale: Chooses the prescale factor for the PWM based control clock. If the PWM is also used as an
output peripheral, this setting must match the setting of the PWM block in the diagram.

Control Clk Src: Chooses periodic sampling interrupt source for the main control loop in Embed.

CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.

CPU Speed: Indicates the speed of the CPU.

Ctrl Clk Count Mode: Chooses the count mode for the PWM based control clock. If the PWM is also used as an output
peripheral, this setting must match the setting of the PWM block in the diagram.

JTAG Connection: Indicates the JTAG driver to be used for HotLink communication.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

168

2022.1 Embed

Using the Target Support Blocks and Commands

Using MSP430 Config

The MSP430 Config lets you configure settings for the MSP430. After you enter the settings, an MSP430 Config block is
inserted into the diagram.

M5P430 Config >
CPU sub type: Fz274 w Compiler: | Code Composer Studio
JTAG connection: | LISB v Setup DCO and T Clocks ..
ClspwBiwie [indentityJtag | 7 Segment LCD:
LCD type: SBLCDAZ
LF=<T1 Crystal Speed [Hzl 11880 Leading Digit: LCOk1

#T2 Crystal Speed [MHz): CI Digits &zcend in Memary
DCO Speed [MHz): 5 ample Interrupt Sic:

Internal Clocks TIMER Ta0 =
Source Drivvider .
Timerz

ALK LReT1 ~] [A > TIMER TAOClk Sre: | TAOCLK ~
MCLE: DCo v v TIMER TEOCI S| TBOCLK
SMCLE: Do v A w ACLE

ACLE.
Low Power Mode:

ACLE.

LPMO: CPU [MCLE] aff L

DLLASAD Yersion:

Altair Embed support for MSP430+170 B

Cancel Help

7-Segment LCD

Digits Ascend in Memory: Specifies whether the digits ascend or descend in memory.

LCD Type: Chooses one of the Softbaugh LCD devices or a custom device.
Leading Digit: Chooses the LCD memory location for the starting digit of the multi-digit, 7-segment display.

Compiler: Fixed to Code Composer Studio™ for version 14 and 15.

CPU Sub Type: Specifies the specific MSP430 CPU number. When you choose a subtype, note that other dialog box
values may change to reflect the default values of the subtype. For example, when you choose F2012, SMCLK Source
changes to DCO.

Internal Clocks

ACLK: Lets you select the source and the divider for the auxiliary clock.
MCLK: Lets you select the source and the divider for the main (or master) clock.

SMCLK: Lets you select the source and the divider for the submain clock (SMCLK). This clock is often used to drive
peripherals like timers, serial port, 12C, and SPI.

JTAG Connection: Indicates the port to which the JTAG pod is connected. Activate Spy Bi Wire to use this method of
JTAG HotLink communication.
LFXT1 Crystal Speed, XT2 Speed, DCO Speed

2022.1 Embed 169

Using the Target Support Blocks and Commands

DCO Speed: Indicates the speed of the CPU. You can adjust the DCO speed by clicking the Setup DCO and XT Clocks
button.

LFXT1 Crystal Speed: Lets you specify custom external crystal speed. The default is 32768Hz. Check hardware
documentation for the correct crystal speed. You can adjust the LFXTI crystal speed by clicking the Setup DCO and XT
Clocks button.

XT2 Speed: Specifies the speed of external crystal 2. This parameter is not available on all CPU subtypes. You can
adjust the XT2 speed by clicking the Setup DCO and XT Clocks button.
Low Power Mode

LPMO: Turn off CPU (MLCK); all other clocks running
LPM1: Turn off CPU and DCO; ACLK and SMCLK running
LPM2: Turn off CPU and SMCLK; ACLK and DCO running
LPM3: Turn off CPU, SMCLK, and DCO; ACLK running
LPM4: All clocks turned off

None: All clocks running

Sample Interrupt Src: Specifies the periodic interrupt source for the main Embed control loop. (The interrupt rate is
automatically set to the Embed sample rate at time of code generation.)

Setup DCO and XT Clocks: Lets you set up the DCO and external clocks. For more information, see Setting up DCO
and external clocks.

Timers: Select the clock sources for each timer. The ACLK and SMCLK are internal clocks. The TACLK and TBCLK are
external clocks.

Setting up DCO and external clocks

To set up the DCO and external clocks, click on the Setup DCO and XT Clocks button in the MSP430 Config dialog box.

MSP430 1xx, 2xx, and 20xx subtypes

Basic Clock Config X
LF =T1 oCco
Crystal Speed: 22768 BCSCTL1.RSEL=: 12 v
[JHigh Frequency Mode DCOCTL.DCO:: 5 e
Capacitance: ~1pF v DCOCTL.MODs 0 ~
Source: | 32768 Hz crystal - []Use Calibrated Setiing: 1 tHz
DCO Speed (MHz):
HT2
Cryztal Speed: ICI Hz
Hange: | 04 -1MHz ciystalfresonatar
Cancel Help
DCO

BCSCTL1.RSELx: Defines a nominal frequency in conjunction with the DCOCTL.DCOx and DCOCTL.MODx. See
also Texas Instruments MSP430X1 User Guide.

DCOCTL.DCOx: Defines a nominal frequency in conjunction with the BCSCTL1.RSELx and DCOCTL.MODXx. See
also Texas Instruments MSP430X1 User Guide.

170 2022.1 Embed

https://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://www.ti.com/lit/ug/slau049f/slau049f.pdf

Using the Target Support Blocks and Commands

DCOCTL.MODx: Defines a nominal frequency in conjunction with the DCOCTL.DCOx and BCSCTL1.RSELx. See
also Texas Instruments MSP430X1 User Guide.

DCO Speed: This is a read-only setting. It calculates the DCO speed based on either the factory calibrated setting or

the user-specified calibrated setting, determined by the RSELx, DCOXx, and MODXx settings.

Use Calibrated Setting: Only for 2xx. Uses factory calibrated setting for the DCO.

LEXT1

Capacitance: Specifies the value of desired on-chip capacitance.

Crystal Resonator ranges: Higher frequency ranges supported by the 2xx, external.

Crystal Speed: Specifies the speed of external crystal one.

High Frequency Mode: Sets to true if LFXT1 is greater than or equal to 400kHz.

Source: For 2xx subtypes, you can specify the source of the XT1 clock. The XTI clock source can be external or

internal. Your choices are:

32768 Hz crystal: Standard low frequency, external
VLOCLK: Very low frequency, internal

Reserved: Do not use

Digital clock: Digital oscillator (not crystal), external
Digital 0.4: Digital oscillator (not crystal), external

XT2

Crystal Speed: Specifies the speed of the second external crystal. If this value is 0, Embed assumes there is not a

second external oscillator.

Range: Specifies the frequency range for the second external crystal.

The MSP430 FLL+ Config dialog box

This dialog box lets you configure settings for the MSP430 3xx and 4xx subtypes.

M5P430 FLL+ Config >
LF %T1 FLL
Crystal Speed: ultiple of Crystal Freqg: 13 ~
] High Frequency Mode Additional Multiplier: g V)
Capacitance: ~1pF ¥ DCOSpeed (MHz)
wT2
Crygtal Speed: ICI Hz
Cancel Help
FLL

Additional Multiplier: Specifies an additional multiplier for calculating the DCO speed.

DCO Speed: Indicates the DCO speed, which is based on the Multiple of Crystal Freq and Additional Multiplier

values.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency. It defines the DCO speed by multiplying this

value by the crystal speed.
LFXT1

2022.1 Embed

171

https://www.ti.com/lit/ug/slau049f/slau049f.pdf

Using the Target Support Blocks and Commands

Capacitance: Specifies the value of desired on-chip capacitance.
Crystal Speed: Specifies the speed of external crystal one.

High Frequency Mode: Sets to true if LFXTL1 is greater than or equal to 400kHz.
XT2

Crystal Speed: Specifies the speed of the second external crystal. If this value is 0, Embed assumes there is not a
second external oscillator.

The MSP430 Unified Clock System (UCS) dialog box

This dialog box lets you configure settings for the MSP430 5xx subtypes.

M5PA30 Unified Clock System (UCS) Config .
=T FLL Config
Crystal Speed: FLL Reference Clk Sre: HWT1CLK w
[Use External Clock [Instead of Crystal) FLL Reference Clk Div: RefClk/1
(] Turr Off i LPM4 tultiple of Crystal Freg: 13 ~
[Use On-chip Capacitance | ~2pF DEOCLKDIY (MHz]
#T2 FLLD prescaler: D “

Crystal Speed: ICI

[]Use External Clock [Instead of Crystal)
[Tum OFf in LPH 4

Hz DCOCLK [MHz)

Cancel Help

FLL
DCOCLK: Scaled version of DCOCLKDIV.

DCOCLKDIV: Read-only value, based on the FLL Reference Clk Src, FLL Reference Clk Div, and Multiple of Crystal
Freq values.

FLLD Prescaler: Applies a scale factor to the DCOCLK.
FLL Reference Clk Src: Selects the clock source for the frequency lock loop to calculate the value of DCOCLKDIV.
FLL Reference Clock Div: Divides the clock source to calculate the value of DCOCLKDIV.

Multiple of Crystal Freq: Multiples the clock source to calculate the value of DCOCLKDIV.
XT1

Crystal Speed: Specifies the speed of external crystal one.
Use External Clock: Specifies an external clock.
Turn Off in LPM4: Turns off crystal one in low-power mode four.

Use On-Chip Capacitance: Makes on-chip capacitance externally available. Select the capacitance from the drop-
down box.
XT2

Crystal Speed: Specifies the speed of the second external crystal. If this value is zero, Embed assumes there is not
a second external oscillator.

Turn Off in LPM4: Turns off crystal two in low power mode four.

172 2022.1 Embed

Using the Target Support Blocks and Commands

Using STM32 Config

The STM32 Config lets you configure settings for the STM32. After you enter the settings, an STM32 Config block is
inserted into the diagram.

STM32 Config d
CPU: H? 472 w| CPUSpeed: B4 MHz [tax Rated Speed: 420MHZ] Yoltage regulation: Boosted “
Care: 1 ~| CPU25peed |54 MHz Pawer Supply Canfig: P\wR_LDO_SUFFLY -

CLE Sources

HSI [High Speed Internal): B4 MHz v C5l: ~4MHz

LS| [Lows Speed Internal]: ~40 kHz

HSE [High Speed Externall |2 MHz | Estemal CLE, [1-32 MHz. uses PHO only) w
LSE [Low Speed Extemall: | 32768 Hz | Eutemal CLK [1Hz - 1MHz, uses anls P414) v

CPU and Peripheral Bus CLE:

PLLSRLC: HslI “ PLLM PREDIV 1 v FLLZDIWM: |q w FLL3DIVM: | q w
SYSCLE= |HEI w *PLLN 4 w | 286 MHz *PLLZN 4 w296 MHz *PLL3N 4 w | 256 MHz
HCLK=5%SCLES |1 ~ | B4 MHz FLLDIWF: 1 w | 28E MHz PLLZDIVP: |4 w | 28EMHz PLL3DIVP: 4 w | 286 MHz
PCLE1=HCLKS |1 ~ | B4 MHz FLLDIVG: 1 ~ | 286 MHz PLLZDIVE: 4 w 2BEMHz PLLIDIVA: 4 | 286 MHz
PCLEZ2=HCLES 1 w | B4 MHz FLLDIR: 1 w26 MHz pPLLZDIVE: 1 w 286 MHz PLLADIVE: 1 w286 MHz
JTAG Connect Toolchain Control Cli Yersion |nfo;

STlnk USE gee v Srer | SpsTick It Count Mode: | [y -:-_'Itgg %E'deeg??;gpmt for 5T 32

Canicel Help

CLK Sources

HSE: Chooses the speed of the external clock/crystal. Select the HSE mode (clock, crystal, or unused) in the dropdown to
the right.

HSI: Indicates the speed of the HSI clock.

LSE: Chooses the speed of the external clock/crystal. Select the LSE mode (clock, crystal, or unused) in the dropdown to
the right.

LSI: Indicates the speed of the LSI clock.

MSI: Indicates the speed of the MSI clock.
Control Clk

Count Mode: Displays the count mode. This is a read-only parameter.

Src: Displays the periodic sampling interrupt source for the main control loop in Embed. This is a read-only parameter.
Core: Selects the core device. Only available on STM32 dual core MCUs (H723VE — H735ZG targets).

CPU: For some targets, there is a family of CPU types. It is important to select the exact CPU type for the specified target.

CPU Speed: Indicates the speed and the maximum rated speed of the CPU. This parameter is affected by the Voltage
Regulation parameter. STM32 H723VE — H735ZG targets are dual core. There is a CPU2 Speed parameter for the
second core.

CPU and Peripheral Bus CLKs

HCLK=SYSCLK/: Selects the divider for the HCLK.

HSE_PREDIV: Divides the HSE source. It can be divided by 2 — 16. This parameter is available for only F3 series targets
that do not end in D or E.

2022.1 Embed 173

Using the Target Support Blocks and Commands

PCLK1=HCLK/: Selects the divider for the PCLK1. Used by the APB1 peripherals.
PCLK2=HCLK/: Selects the divider for the PCLK2. Used by the APB2 peripherals.

PLLM PREDIV / and *PLLN: PLLM PREDIV divides the PLL source. It can be divided by 1 — 16. *PLLN multiples the
results. If PLLN is highlighted in red, the value is either too high or too low. This parameter is available for all targets
except F3 series that do notend in D or E.

PLL2DIVM and *PLLN2: PLL2DIVM divides the PLL source. It can be divided by 1 — 16. *PLLN2 multiples the results. If
PLLNZ2 is highlighted in red, the value is either too high or too low.This parameter is available for all targets except F3
series that do not end in D or E.

PLL3DIVM and *PLLN3: PLL3DIVM divides the PLL source. It can be divided by 1 — 16. *PLLN3 multiples the results. If
PLLNS3 is highlighted in red, the value is either too high or too low. This parameter is available for all targets except WB
series and F3 series that do not end in D or E.

PLLDIVP, PLLDIVQ, PLLDIVR: Specifies the divider values for PLL outputs P, Q, and R. Only available on STM32 F4x,
GOx, G4x, and L4x targets.

PLL2DIVP, PLL2DIVQ, PLL2DIVR: Specifies the divider values for PLL2 outputs P, Q, and R. Only available on STM32
F4x, GOx, G4x, and L4x targets.

PLL3DIVP, PLL3DIVQ, PLL3DIVR: Specifies the divider values for PLL3 outputs P, Q, and R. Only available on STM32
F4x, GOx, G4x, and L4x targets.

PLLSRC: Selects the clock source used to drive the PLL input. You can also choose the PLL multiplier and divisor.
SYSCLK: Chooses the input for the system clock.

JTAG Connect: Indicates the JTAG driver to be used for HotLink communication.

Power Supply Config: Configures the power supply. Only available onSTM32 F103x and H7x targets.

Toolchain: Selects the compiler to use.

Voltage Regulation: Controls the internal voltage of the chip. The lower the level, the less power the chip uses. When
you change the Voltage Regulation, the CPU Max Rated Speed is changed accordingly.

Using the Peripheral Config blocks

Using ADC Config
Target Category: Arduino, C2407, Delfino, F280x, F281X, MSP430, Piccolo, STM32

The ADC Config lets you control the ADC trigger for the supported boards. The ADC Config is essential for motor control
algorithms.

174 2022.1 Embed

ADC Config for Arduino

Arduino ADC Properties *
ADC PreScaler: 128 ~
CPU Frequency: 100 Mhz

ADC Freguency:

781.25 khz

Cancal e

Using the Target Support Blocks and Commands

ADC Frequency: Indicates the ADC clock value based on the ADC prescaler.

ADC Prescaler: Prescales down the ADC clock speed by a specified factor. Prescale factors of 2, 4, 8, 16, 32, 64, and
128 are provided. If, for example, you are running your Arduino board at 16MHz with a prescale factor of 2, the ADC clock

is set to 8MHz.

CPU Frequency: Indicates the core clock speed of the target device.

ADC Config for C2407

ADC 2407 Properties et

S5 CLE:

ADCCLE: 2~ |20 Mhz
Sample Duration; g o ADCCLE:

Sample Trigger
ADCO-ADCT: Start of Control Timer Intermupt
ADCE-ADCT5: Start af Control Timer Interrupt

Cancel Help

ADCCLK: Specifies the analog-to-digital converter clock.

Sample Duration: Chooses the number of ADC clock ticks for a given ADC sample. High impedance inputs require

longer samples. A recommended duration is 20 nsec.
Sample Trigger: Controls when to start sampling channels.

SYSCLK: Indicates the speed of the CPU clock.

2022.1 Embed

175

ADC Config for F281X

Using the Target Support Blocks and Commands

To configure the ADC trigger setup, you must first insert an F281X Config block in your diagram and set the CPU to your
device. Only then can you access the ADC Config Properties dialog box.

ADC F281x Properties

SYSCLE:
HCLK: SYSCLK/ (1~

ADCCLE: HCLES | B w | |25 bz
Sample Duration: 4 e |ADCCLE:

[] Usze full scale walue = 1 [faster code gen)

[] Use Continuous Corversion

Sample Trigger

ADCO-ADCT: Start of Contral Timer [nterrupt

ADCE-ADCIE: Start of Contral Tirmer |nterpt
[15ample sequence 1 and 2 simultaneously
[]Cascade zequence 1 and 2

Channel Sample Order:

Cancel Help

012345678310111213.14.15 Mew...

>

o

S

ADCCLK: Specifies the analog-to-digital converter clock.

Channel Sample Order: Specifies the order in which you sample the channels. Click New to specify a new sample order.

HCLK: Specifies the high-speed clock.

Sample Duration: Chooses the number of ADC clock ticks for a given ADC sample. High impedance inputs require
longer samples. A recommended duration is 20 nsec.

Sample Trigger

Controls when to start sampling channels.

Cascade Sequence 1 and 2: Scans sequence 1 followed by sequence 2.
Sample Sequence 1 and 2 at the same time: Allows the simultaneous sampling of the two sequences.

SYSCLK: Indicates the speed of the CPU clock.

Use Continuous Conversion: Enables the continuous conversion option in the hardware.

Use Full Scale Value = 1: Provides direct read of the ADC result register with no scaling. When activated, the value will
range between zero and 0.00007. When de-activated, Embed adds code to scale the result from zero to three.

176

2022.1 Embed

Using the Target Support Blocks and Commands

ADC Config for Delfino, F280X, and Piccolo
To configure the ADC, it's a good idea to first insert an F28x Config block in your diagram and set the CPU to your device.

Oversamling the ADC results in a reduction of noise. For every four oversamples, you’ll see one additional bit of precision.
Examples of how to oversample an ADC channel, see Examples > Embedded > Piccolo > ADC.

Note: The ADC Config dialog box is dependent on the target you select. If you selected an older device, the dialog box
parameters are different from the ones shown below.

ADC F28035 Properties x

STSCLE: B0 bz | Single Ended ~ | ADC Unit:

Interupt on Corversion Start

ADCCLK: SYSCLES 2 |30 khz Setup PGA Gaing...

Reference: 12-ht

Trigger Setup

Src Trigger Sample Clkz

ADCRESULTLO: ADCIMNAD wo | | ePwWi 15008 || 7 [Dual Sample
ADCRESULTT: ADCIMAD | | ePwWi1-S008 | (12

ADCRESULTZ: ADCIMED wo| | ePwWi1-S008 | (12 [Dual Sample
ADCRESULTZ: ADCIMNAT wo| | ePwWi1-500A | (12

ADCRESULT 4: ADCINAT w | | Timer 2 w || 7 v [Dual Sample
ADCRESULTE: ADCIMAS “ || Software “ || 7 w

ADCRESULTE: ADCINAR ~ | | Software ~ || 7 w [Dual Sample
ADCRESULTY: ADCIMNAT “ | | Software “ || 7 “

ADCRESULTE: ADCINBO ~ | | Software w12 - (] Dual Sample
ADCRESULTS: ADCIMNET wo| | ePWiT-SYME v | (12

ADCRESULTIO0: ADCIMEZ | | ePwWi1-S008 | (12 [] Dual Sample
ADCRESULT11: | ADCIME3 w | | Software ~ || 7 w

ADCRESULT1Z: ADCIMB4 || Software |7 e [Dual Sample
ADCRESULT13: | ADCIMES ~ | | Software ~ || 7 w

ADCRESULT14: | ADCIMNEE w | | Software || 7 W [Dual Sample
ADCRESULT1E: | ADCIMNEBT “ | | Software “ || 7 w

Cancel Help

12-bit/16-bit: Specifies either a 12-bit or 16-bit analog measurement. This parameter is available on newer Piccolo chips.
ADCCLK: Specifies the analog-to-digital converter clock.
ADC Unit: Specifies the ADC unit to be configured. This parameter is available on newer Piccolo chips.

Dual Sample: If a dual sampling is selected, two consecutive SOCs (SOCx and SOC(x+1) or ADCRESULTx and
ADCRESULTx+1) are used. The even humbered ADCRESULT contains the ADCINAy value while the next (odd
numbered) ADCRESULT contains the corresponding ADCINBY value. Only these ADC inputs can be dual sampled. On
clicking the dual sample, the even numbered ADCRESULT Src field must contain only the ADCINAO to ADCINA7. Once
the ADCINAYy value is selected, the next odd numbered ADCRESULR Src field must contain the ADCINBy ONLY with the
selection fixed. This parameter is available on Piccolo, F2802x, F2803x, F2805x, F2806x, and Concerto.

2022.1 Embed 177

Using the Target Support Blocks and Commands

Interrupt on Conversion End: Generates interrupt on conversion end.
Interrupt on Conversion Start: Generates interrupt on conversion start.

Reference: Specifies the voltage reference. This parameter is available on Piccolo, F2802x, F2803x, F2805x, F2806X,
and Concerto chips.

Setup PGA Gains: Invokes a dialog box to set the gain mode and output filter resistance for all PGAs.

Single Ended/Differential: When you choose Single Ended, Embed compares a single channel relative to analog
ground. When you choose Differential, Embed measures the voltage difference between pairs of channels. This
parameter is available on newer Piccolo chips.

SYSCLK: Indicates the speed of the CPU clock.
Trigger Setup

Dual Sample: Lets you sample pairs of channels simultaneously. This parameter is available for targets that do not
have multiple ADC units.

Sample Clks: Specifies the sample and hold duration in units of system clocks.
Src: Specifies the analog pin on which to measure the voltage.

Trigger: Specifies the signal that will trigger a conversion.

ADC Config for F280X - early versions

To configure the ADC, it's a good idea to first insert an F28x Config block in your diagram and set the CPU to your device.
The ADC Config Properties dialog box for the device.

Note: The ADC Config dialog box is dependent on the target you select. If you selected a newer device, the dialog box
parameters are different from the ones shown below.

ADC F280x Properties e

SYSCLE:

HCLE: SYSCLES |1 = 1100 Mhz
ADCCLE: HCLES (1~ |100Mhez
Sample Duration: 1 ~ | &0CCLKs

[JUse full scale walue = 1 [faster code gen)

[] Use Continuous Conversion

Sample Trigaer
ADCO-ADCT: Start of Contral Timer Interupt
ADCE-ADCTIS: Start of Cantrol Timer Interupt

[]5ample sequence 1 and 2 simultaneously
[]Cascade sequence 1 and 2

Channel Sarmple Order:
0.0.0,0.0,0,0.0,0,0.00.0.00.0 Mew...

Cancel Help

ADCCLK: Specifies the analog-to-digital converter clock.

178 2022.1 Embed

Using the Target Support Blocks and Commands

Sample Duration: Chooses the number of ADC clock ticks for a given ADC sample. High impedance inputs require
longer samples. A recommended duration is 20 nsec.

HCLK: Specifies the high-speed clock.

Sample Duration: Chooses the number of ADC clock ticks for a given ADC sample. High impedance inputs require
longer samples. A recommended duration is 20 nsec.
Sample Trigger

Controls when to start sampling channels.

Cascade Sequence 1 and 2: Scans sequence 1 followed by sequence 2.
Sample Sequence 1 and 2 at the same time: Allows the simultaneous sampling of the two sequences.

SYSCLK: Indicates the speed of the CPU clock
Use Continuous Conversion: Enables the continuous conversion option in the hardware.

Use Full Scale Value = 1: Provides direct read of the ADC result register with no scaling. When activated, the value will
range between zero and 0.00007. When de-activated, Embed adds code to scale the result from zero to three.

ADC Config for STM32

Each ADC unit on the STM32 supports two independent sequencers that select input channels to be sent to the single
AtoD converter for conversion. The Regular Sequencer supports up to 16 ordered elements in the sequence queue. Each
sequence element can take its input from any of the 18 possible input channels available to the chip. After conversion, the
results are sent to a single data register. To avoid overriding this register, DMA is used to automatically send the register
to a memory vector called _Adc<unit-number>Result[n]. The memory location is displayed in the dialog box under
Regular Sequencer Result.

The Injected Sequencer is similar to the Regular Sequencer, but it has only four ordered places in its sequence queue;
however, it has four dedicated registers: one for each of the four input channels after they have been converted (JDRn).

The Injected Sequencer has higher priority over the Regular Sequencer and can “inject” its sequencer requests into an
ongoing Regular Sequence if need be.

2022.1 Embed 179

Using the Target Support Blocks and Commands

ADC STM32 Properties x
ADC Unit; ADC1 ~ | ADCCLE= |HsH4 w /e o Sequencing: SIMGLE_CORY
Resolution: [12Bits ~ | Alignment: g,

Regular Sequencer Injected Sequencer
Trigger: TIM1_TRGO ~ Trigger: Input Channel Configure: SE /Differential
OnEdge: None v On Edge: IN1: |3ADCCLKs | |Single v
IMZ: w i w
Result Input Source Result Input Source JEDIOLAS S?ngle
_AdolResulll] ADCI_INT [PAD] ~ JDR1; IN3 | JADCCLRs | | Single V
_AdelResul(l} ADCI_INT [P&O] JDRZ; ::: SHCELGs - fshel
_AdciResul{Z} | ADCIINT[FAQ] IDR2 lNE. 3ADCCLKs ~ | | Single ~
_AdciResulidl ADCT_INT [PAO] JDR4: - |3ADCCLEs v)|Singe v

IN?: | 3ADCCLE: “~ | | Single w
INS: | 3ADCCLE: | | Single ~
INg: | 3ADCCLE: | | Single ~

<

_Adc1Result[4l | ADC1_INT [PAD]
_AdclResulS) | ADCI_INT [P&O]
_Adc1ResultlBl | ADCI_INT [PA0] M0 5 apocL _
_AdelResul7l | ADCI_INT [P&0] ' s v U
_AdcTResul[S] | ADCT_INT [PAD] ::1 12 SREBOLS ang'e
_adciResul3] | ADCI_INT [F&0] - |3ADCCLEs v Single
“AdelResulf10} | ADCTINT [PAD] IM13 | 3ADCCLEs ~ Single

<

4

<

<

<

4

_AdciResul[11; | ADCI_INT [F&0] ~ IN14: |3ADCCLEs ~ | Single
_AdeiResul[12) | ADCT_INT [PA0] ~ IN15: | 3ADCCLEs
_AdcTResul{13] ADCI_INT [P&0] INT6: | 3ADCCLKs v
_AdciResul[14] ADCI_INT [Fa0] IN17: »
_Ade1Resul(15]: ADCI_INT [P&0] IN18: v

Cancel Help

ADCCLK=: Selects the source clock and the divider.
ADC Unit: Specifies the ADC unit to be configured.

Alignment: Aligns least significant digit (Right) or most significant digit (Left).
Injected Sequencer

Input Source: Selects the input channel for a given sequencer queue element.
On: Selects the trigger edge event that causes the sequencer to begin converting.

Trigger: Selects the trigger source.
Input Channel Configure

Sample Time: Indicates the sampling time for each input channel. Longer sampling times generally provide more
accurate results but take longer to complete.

SE/Differential: Selects if the given channel is single-ended or a differential pair. When you select Differential, the first
input is positive and the second input is negative.
Regular Sequencer

Input Source: Selects the input channel for a given sequencer queue element.
On: Selects the trigger edge event that causes the sequencer to begin converting.
Trigger: Selects the trigger source.

Resolution: Specifies 6-, 8-, 10-, or 12-bits of the result data.

180 2022.1 Embed

Using the Target Support Blocks and Commands

Sequencing: Indicates triggered conversions of a single sequence of channels. This is a read-only parameter.

SYSCLK: Indicates the speed of the CPU clock.

ADC10/12 Config for MSP430

The ADC10/12 Config lets you configure MSP430 ADC clock settings. Note that the dialog box that appears when you
click on the ADC10/12 Config command is dependent on the CPU subtype that you specify in the dialog box for the

MSP430 Config command. The following are the two possible dialog boxes that correspond to the ADC10/12 Config
command:

MSP430 ADC10 Config x M35P430 ADC12 Cenfig X
ADCI02CLK SAC: ADCIZCLK SRC: ADCIZ0SC ~

ADCI0CLK Divide: |1 v MHz || s0C12CLK Divide: |1 v MHz
Sequencing Mode: | Single-channel, single-convert Sequencing Mode: | Single-channel, single-conver
WRef Source: Weohss - Sequence Speed. | Synchanize to Sample Trigger ~
O chifp WiRtE 142 [ttt - YRef Source: 1.5¢ Intemnal w
Sample Trigger: Start of Control Timer [nterupt ~ Sample Trigger: Start of Contral Timer Interupt
Sample Duration: 4 v

Sample Duration:
Reference Output Control

Duration controlled by Sample Trigger on time: ~
[Use On-chip Reference Buffer & B ae
High Pawer (200 K5SPS) v Sampls counts for ADCOADCY: 4
Always On ~ Sample counts for ADCE-ADCT5: 4
Cancel Help Cancel Help

ADCxx2CLK SRC: Chooses the source for the ADC10 or ADC12 clock.
ADCxxCLK Divide: Divides the specified ADC10 or ADC12 clock into a slower rate of your choosing.

On chip Vref: Selects the voltage reference.
Reference Output Control (for ADC10 block)

Use On-Chip Reference Buffer: Lets you use the internal reference source on the Vref output pin.

Sample Duration (for ADC10 clock): Indicates the number of ADC10 clocks that comprise the ADC sampling period.
The longer you take to sample, the more accurate your measurement.
Sample Duration (for ADC12 clock)

Duration controlled by ADC12CLK count set below: This is the preferred setting. You set the sample control
counts in the Sample Control Counts text boxes. The longer the count, the more you sample.

Duration controlled by Sample Trigger on time: This is the default setting. If you choose this setting, you will need
an external pin.

Sample Control Counts for ADCO-ADC7: Specifies the sample control counts for ADCO through ADC7.

Sample Control Counts for ADC8-ADC15: Specifies the sample control counts for ADCO through ADC?7.

Sample Trigger: Controls when to start sampling channels. You can synchronize with the start of the control timer
interrupt or with Timer A.
Sequencing Mode

Chooses the operational mode of the ADC engine.

Sequence-of-channels: Samples a number of channels, one after another.
Single-channel, single-convert: Samples one channel once.
Repeat-sequence-of-channels: Samples a number of channels, one after another, nonstop.
Repeat-single-channel: Samples one channel nonstop.

2022.1 Embed 181

Using the Target Support Blocks and Commands

Sequence Speed: If you are in channel sequence mode, this parameter lets you insert delays in the sequence. This
parameter is available only on the ADC12 clock.

Vref Source: Lets you select the reference voltage for the unit. Because the internal voltage reference can be inaccurate,
this parameter lets choose a high-precision, external signal.

Using CAN Config
Target Category: C2407, Delfino, F280x, F281X, Piccolo, STM32

The CAN Config lets you configure the controller area network.

F280X F28069M CAM Configuration

It

Buz Rate [MHz]: 0.25 kHz
Baud Rate Prescale [1-255];
TSeql: TSeqz:
LT 2 v
Sample Paint: Sync Jurnp Swfidth:
|1 Point v| K v
Synchronization Byte Order:
|Falling ~| BigEndian -
R Mux Pin T Mux Fin
GRIO30 W GFIO31 w
ak. Cancel Help

Baud Rate Prescale: Indicates the divisor applied to system clock to obtain the CAN clock. For more information, see
http://www.bittiming.can-wiki.info/.

Bus Rate: Indicates the base bit rate of CAN bus messages.

Byte Order: See Texas Instruments or STM32 documentation.

RX Mux Pin: Indicates the RX pin choices for CAN messages.This parameter is not available for C2407 targets.
Sample Point: See Texas Instruments or STM32 documentation.

Synchronization: See Texas Instruments or STM32 documentation.

Sync Jump Width: Indicates the amount the CAN unit can adjust timing to sync with the bus. (1 for CANopen and
DeviceNet.)

TSegl and TSeg2: The ratio defines the sampling point for the bit: (Tsegl+1)/(Tsegl+Tseg2+1). For CANopen and
DeviceNet, ratio=0.875; for ARINC 825, ratio=0.75. For more information, see http://www.bittiming.can-wiki.info/.

TX Mux Pin: Indicates the RX pin choices for CAN messages. This parameter is not available for 2407 targets.

Unit: Specifies the unit.

182 2022.1 Embed

https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.bittiming.can-wiki.info%2F&data=04%7C01%7Ckdarnell%40altair.com%7Ca143b0d499f54738ce9308d984f9d8a5%7C2bae5b570eb848fbba47990259da89d2%7C0%7C0%7C637687030876463692%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=wb0iKheshsg4rzx%2BROhI%2BaLwCaOmu3RJMI6ITcAnPuc%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.bittiming.can-wiki.info%2F&data=04%7C01%7Ckdarnell%40altair.com%7Ca143b0d499f54738ce9308d984f9d8a5%7C2bae5b570eb848fbba47990259da89d2%7C0%7C0%7C637687030876463692%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=wb0iKheshsg4rzx%2BROhI%2BaLwCaOmu3RJMI6ITcAnPuc%3D&reserved=0

Using the Target Support Blocks and Commands

Using DMA Config
Target Category: Delfino, F280x, F281X, Piccolo, STM32

The DMA Config lets you configure a Direct Memory Access (DMA) channel. The DMA peripheral will automatically
transfer memory items from a source set of memory locations to a destination set of memory addresses, on the
occurrence of an interrupt on the selected trigger source. The memory locations can include peripheral device addresses
allowing automatic transfer of peripheral data to memory or memory to peripheral devices. For example, an ADC channel
can be automatically sampled and read to a memory buffer, or a memory buffer with a preconfigured waveform can
repeatedly written out at a specific rate to a PWM compare register.

DMA Config

Channel: 1 ~ Data Size: 16-bit ~] Continuous Made

Trigger S Maone e []0ne Shat

Init Src Address: | ‘ Init Dzt Address: | |
Burst Size: 1 w | Burst S Stepo 1 Burst Dst Step:

[l

Tranzfer Dst Step:

Transfer Size: El Tranzfer Sre Step:

Il

Wirap 5o Size: EI “Wiap Sic Shep:

P]

“Wirap Dt Size: EI “Wiap Dst Shep: ICI

Ok Cancel Help

Burst Size: Specifies the count of data items to be transferred.

Burst Dst Step: Specifies the step size between memory locations in the destination.

Burst Src Step: Specifies the step size between memory locations in the source.

Channel: Specifies the DMA channel number.

Continuous Mode: If you do not activate Continuous Mode, DMA interrupt generation stops after one interrupt.
Data Size: Indicates the size of a single memory element to be transferred.

Init Dst Address: Specifies the initial destination memory location. This uses standard C address syntax. You can also
use Texas Instruments names for hardware devices, for example, &CMPA1 specifies the address of the first PWM
compare register.

Init Src Address: Specifies the initial memory location. This uses standard C address syntax. You can also use Texas
Instruments names for hardware devices, for example, &ADCRESULTO specifies the address of the first ADC result
register.

One Shot: If One Shot is activated, the DMA unit immediately begins the next burst after servicing the previous burst.
Otherwise, the DMA unit waits for a peripheral interrupt after the first burst.

Transfer Dst Step: Specifies the step size between memory locations in the destination.
Transfer Size: Specifies the count of bursts to be transferred.

Transfer Src Step: Specifies the step size between memory locations in the source.
Trigger Src: Specifies the interrupt signal that will cause a DMA transfer to occur.

Wrap Dst Size: Specifies the wrap destination initial count. If the wrap count decrements to zero, the current destination
address is incremented by the wrap step, and the wrap counter is set to the wrap size.

2022.1 Embed 183

Using the Target Support Blocks and Commands

Wrap Dst Step: Specifies the wrap destination initial count. If the destination wrap count decrements to zero, the current
destination address is incremented by the destination wrap step, and the destination wrap counter is set to the destination
wrap size.

Wrap Src Size: Specifies the wrap source initial count. If the source wrap count decrements to zero, the current source
address is incremented by the source wrap step, and the source wrap counter is set to the source wrap size.

Wrap Src Step: Specifies the wrap step. If the source wrap count decrements to zero, the current source address is
incremented by the wrap step, and the wrap counter is set to the wrap size.

Using ESP8266WiFi Config

The ESP8266WiFi Config lets you configure the ESP8266 module on your Arduino device.

Arduino ESP2266 WiFi Config >

ESP WiFi Shield Configure
SSID: | WiFi Name |

Password: | WiFi Password |

ESP TX Pin ->Arduino:
ESP RX Pin-> Arduino:

[JEnable serial Debug

MQTT Client Configure

[
L
o

MQTT Max Packet Size:

MOQTT KeepAlive Seconds: 15

MOQTT Socket TimeQut Seconds: 15

] Edit MQTT Default Config

Cancel b

ESP WiFi Shield Configure

SSID: Specifies the available WiFi name.

Password: Specifies the WiFi security password.

ESP RX Pin -> Arduino: Specifies the pin that connects to the Arduino digital pin 3.
ESP TX Pin -> Arduino: Specifies the pin that connects to the Arduino digital pin 2.

Enable Serial Debug: When activated, displays the debug messages on the serial terminal (serial config 9600, 8, 1, 0, 0).
MQTT Client Configure

Edit MQTT Default Config: When activated, you can edit the default MQTT Client Configuration settings.
MQTT Max Packet Size: Specifies the maximum packet size. The default is 256.

MQTT Keep Alive Seconds: Specifies the keep alive period. That is, how often the client sends a PING message to the
broker. The default time interval is 15 sec.

MQTT Socket Time Out Seconds: Lets you set the timeout manually. The default timeout is 15 sec.

184 2022.1 Embed

Using GPIO Qualification

Using the Target Support Blocks and Commands

The GPIO Qualification block lets you choose the qualification time interval for GPIO pins on the Delfino, F280X, and
Piccolo. Selection of qualification can help filter noise and remove glitching from external signals.

GPIO Bank:

GRIOO:
GPIOT:
GRIOZ:
GRIO3:
GRIO4:
GPIOG:
GPIOE:
GRIOF:

Ok

[ualfication Penod:

F28004% GPIO Qualification Properties

1 L

Sync to SY'SCLEOUT
Sync o SYSCLEOUT
Sync o SYSCLEOUT
Sync o SYSCLEOUT
Synic o SYSCLEOUT
Sync to SY'SCLEOUT
Sync to SY'SCLEOUT
Sync to SY'SCLEOUT

Lancel

SYSCLEOUT A

<

Help

GPIO Bank: Selects the bank of 8 GPIO pins to configure.

GPIOO0-7: Selects synchronization or qualification duration for a given GPIO pin.

Qualification Period: Selects the duration of a Qualification sample.

2022.1 Embed

185

Using the Target Support Blocks and Commands

Using 12C Config

12C Config for Arduino, Cortex M3, Delfino, F280X, Linux Raspberry Pi, Piccolo, and
STM32

The 12C Config lets you configure the 12C unit.

|2C Port Properties ot
Fort: T
Clock Source: PCLET »
Frezcale [|2CPSC): 1] 0.255
High Time [|2CCLEH]: 100 1 _ERRI5
Low Tirne [|2CCLEL): 100 1.65535
Bit Flate (kbps) 72
Data Bits: 1 <
Address Mode: 7 >

Own Address: D
Tx Queue Length: Rx Queus Length;

SCLAR paia “ SDA Pine | patd “

[] Uze Freeform Mode [ho addressing];

Cancel Help

Address Mode: In 7-bit address mode (normal address mode), indicates the 12C module transmits 7-bit slave addresses.
Bit Rate: Indicates the bit rate.
Clock Source: Chooses the hardware source for the system clock.

Data Bits: Indicates the number of bits (1 to 8) in the next data byte that is to be received or transmitted by the 12C
module.

High Time: Indicates the ICCH- Clock high-time divide-down value. To produce the high-time duration of the master
clock, the period of the module clock is multiplied by (ICCH + d), where d is 5, 6, or7.

These bits must be set to a non-zero value for proper 12C clock operation.

Low Time: Indicates the ICCL- Clock low-time divide-down value. To produce the low-time duration of the master clock,
the period of the module clock is multiplied by (ICCL +d). dis 5, 6, or 7.

These bits must be set to a non-zero value for proper 12C clock operation.

Own Address: Indicates the address of this unit on the 12C bus. This is important in slave mode: messages that do not
match Own Address will be discarded. This parameter is not available for ARM Linux targets.

186 2022.1 Embed

Using the Target Support Blocks and Commands

Port: Specifies the port. For ARM Linux targets, 1 is the default device available for use; 0 is reserved for VideoCore and
HAT EEPROM; and 2 is available for use, but it is dedicated to HDMI interface and should not be used. For Arduino pin
mapping, click here.

Prescale: Specifies the value to divide the low speed clock to determine the 12C clock. This parameter is not available for
ARM Linux targets.

Rx Queue Length: Specifies the length of the receive queue.
SCL Pin: Specifies the pin on the device for the serial clock line.
SDA Pin: Specifies the pin on the device for the serial data line.
Tx Queue Length: Specifies the length of the transmit queue.

Use Freeform Mode: Indicates that the transfer has no address field. This parameter is not available for Arduino, ARM
Linux, and Cortex M3 targets.

12C Config for MSP430

The 12C Config lets you configure the 12C unit.
12C Config X
Port: UCRIZCO Module: LUS&RT

Baud Fate: |10000 Hz Clk Src LICLE. w
Intial Mode: [Slave w LICLK D Hz

T Gueue Length: Address Len: 7 e
Rx Queue Length: Dwn Address: ICI
SCL Pire Fl.7 w [] Multi-master Bus

SDA B P16 []Respond to general cal
i : e

Caricel Help

Address Len: Specifies the length of the bus address. It can be either 7- or 10-bit.

Baud Rate: Indicates the base clock rate for master mode.
Clk Src

Selects the clock for the 12C unit. You have these choices:

ACLK: Auxiliary clock

Port: Selects the Comm port
SMCLK: Submain clock
UCLK: External clock

Initial Mode: Specifies the mode at boot time.
Module: Choose among USART, USCIB (new school), and USI (minimalist).
Multi-Master Bus: Set to TRUE if addressing is used.

Mux Pin: Selects which pin a given function is on.

2022.1 Embed 187

Using the Target Support Blocks and Commands

Certain MSP430 devices have different functions for the same physical pin on the chip. This is because pins are
expensive. Sharing time or space is called multiplexing, or muxing, for short. Because multiple functions compete for a
given pin, you must choose what function a pin has. For flexibility, in some cases Texas Instruments has provided multiple
possible pins for a given function. For instance, the CANTXB function can be on pin 8, 12, or 16. Pin 8 is shared with
ePWM5A and ADCSOCAQO, pin 12 is shared with TZ1 and SPISIMOB, pin16 is shared with SPISIMOA and TZ5. So, if you
want ePWMS5A on a pin, then you cannot use pin 8 for CANTXB, but rather you must use pin 12 or 16 instead.

Own Address: Indicates the address of this unit on the 12C bus. This is important in slave mode: messages that do not
match Own Address will be discarded.

Port: Specifies the port.

Respond to General Call: Responds to address 0.

Rx Queue Length: Specifies the length of the receive queue.

SCL Pin/SDA Pin: Specifies mux pins for the I12C clock and data lines.
Tx Queue Length: Specifies the length of the transmit queue.

UCLK: Specifies the external hardware clock rate.

Using SD16 Config

The SD16 Config lets you choose the hardware settings for the SD16 and SD16A blocks for the MSP430.

5016 Config
Clack Source: MCLE. -
Clack Scaling: M e

[]Enable 1.2 Intemal Whef

[] Enable 1.2 Intemal YR ef 1mé buffer
[Low Power Mode

[] Continuous Conversion

ok, Cancel Help

Clock Source: Selects the ADC clock.

Clock Scaling: Selects the divider for the ADC clock.

Continuous Conversion: Keeps the SD16 unit running continuously.

Enable 1.2V Internal Vref: Allows you to enable the internal voltage reference.

Enable 1.2V Internal Vref 1mA Buffer: Allows you to increase the power of the enabled internal reference voltage.

Lower Power Mode: Runs in low power mode.

188 2022.1 Embed

Using Serial UART Config

Using the Target Support Blocks and Commands

The Serial UART Config lets you choose the hardware settings for the serial UART Read and serial UART Write blocks.

Serial Port Config

Part: 1 w | Parity: Mone
B aud R ate: 300 w DataBitz |9
Stop Bitz: 1 w | Clock Sel S¥SCLk

Tx Queue Length:

Fx Queue Length:

o Pin Agzignment
SCIR=: | Pa10 o

SCITH: | PAS v

Cancel Help

X

Baud Rate: Sets the baud rate.

Clock Sel: Chooses the hardware source for the system clock.

Data Bits: Sets the number of data bits.

Mux Pin Assignment: Indicates the GPIO pin on which you want the peripheral signal mapped. This parameter is not

available for MSP430 targets.
Parity: Sets the parity.

Port: Specifies the port.

Rx Queue Length: Sets the length of the receive queue. The minimum length is 1 byte; the maximum length is 255 bytes.

Stop Bits: Sets the stop bits.

Tx Queue Length: Sets the transmit queue length. The minimum length is 1 byte; the maximum length is 255 bytes.

USCIA: Lets you use the USCIA peripheral module. If you have a part with this module and you want to use it, you must
activate this parameter. This parameter is available only for MSP430 targets.

2022.1 Embed

189

Using the Target Support Blocks and Commands

Using SPI Config

The SPI Config lets you choose the hardware settings for the SPI Read and SPI Write blocks for C2407, Cortex M3,
Delfino, F280x, F281X, MSP430, Piccolo, and STM32 targets.

5Pl Configuration Properties
Urit: | 5PN « | Transmitted Bits: 16 =«
Bitrate=5PICLK /Baud_rate_div:
Clk. Srez: FCLE.
Baud R ate Div: 2
Sync Data: on clk edge e
CLE. Polarity: zend on rize/latch on fall w
Metwork Mode: Slave v
M55 Mode: Fulze high between frames
IJze FIFO 0
[Use Tx Soft Queus 1E
3
[]Use R Soft Queue 16
1
kL Fin Agzignment
k051 Fav e
SCLE: Fah e
MI150: FaE v
M55 [chip zel): P e
ak. Cancel Help

Bit Rate: Sets the bit rate.
Clk Src

Selects the clock for the serial port unit. This parameter is not available for STM32 targets.
ACLK: Auxiliary clock.
Port: Comm port.

SMCLK: Submain clock.
UCLK: External clock.

CLK Polarity: Clocks the polarity. You have two choices: Send on rise/Latch on fall and Send on fall/Latch on rise.

Interrupt on RX Fifo Queue Level: Specifies the FIFO level at which an interrupt is generated. A value of n or n-1, where
n is the FIFO length, will minimize interrupt occurrences.

Interrupt on TX Fifo Queue Level: Specifies the FIFO level at which an interrupt is generated. Generally, a value of 1
will minimize interrupt occurrence. Note that interrupts are enabled only when the FIFO is filled and additional items have
been written to the soft queue.

190 2022.1 Embed

Using the Target Support Blocks and Commands

Length: Specified the length of the software queue. The queue will allow buffering up to the specified number of
elements.

Mux Pin Assignment: Sets the external pins used to carry the SPI signals.
Network Mode: Sets the mode to master or slave.

Prescale: Chooses the prescale factor. This parameter is available only for STM32 targets. It is settable only in master
mode.

SPIDiv: Specifies the divider for the system clock to set the SPI clock rate. T
STE/NSS Mode: Enables the slave to transmit data.

Sync Data: Synchronizes the data on the clock edge or % cycle before clock edge.
Transmitted Bits: Sets the number of bits transmitted per transaction (1-16).

Unit: Specifies the unit number.

Use FIFO: Selects use of the hardware FIFO (if present).

Use RX Soft Queue: Selects use of a software queue. This queue is interrupt driven and will be filled automatically by the
Embed driver.

Use TX Soft Queue: Selects use of a software queue. This queue is interrupt driven and will be drained automatically by
the Embed driver.

2022.1 Embed 191

Using SPI Config for Arduino

Using the Target Support Blocks and Commands

The SPI Config for Arduino block lets you choose the hardware settings for the SPI Read for Arduino and SPI Write for

Arduino blocks.

5Pl Configuration Properties

nit: | SPIE w

Bitrate=5"vSClk/SPIDw Slave Mode

SPIDiw

Sync Data: on clk edge e
CLE. Polarity: zend on rize/latch on fall w
Hetwork Mode: Slawve o

kL Fin Agzignment

SPIMOSI FB3 [&rduino pinl 1] w~

SPICLE: FBS [&rduino pinl 3] w~

SPIMISO FB4 [&rduino pinl 2] ~

55 FB2 [&rduino pind 0] ~
] Cancel Help

Bit Rate=SYSCIk/SPIDiv: Displays the bit rate.

CLK Polarity: Clocks the polarity. You have two choices: Send on rise/Latch on fall and Send on fall/Latch on rise.

Mux Pin Assignment: Sets the external pins used to carry the SPI signals. Click here for Arduino pin mapping. The on-
chip Slave Select (SS) pin is available in Slave network mode only.

Network Mode: Sets the mode to master or slave. In Master network mode, the SS pin is selected in the SPI Write for

Arduino block.

SPIDiv: Sets the SPI bit rate. Select from the following:

SPIDiv SPI Bit rate (Hz) SYSCIk (Hz)
2 8000000 16000000
4 4000000 16000000
8 2000000 16000000

192

2022.1 Embed

Using the Target Support Blocks and Commands

16 1000000 16000000
32 500000 16000000
64 250000 16000000
128 125000 16000000

Sync Data: Synchronizes the data on the clock edge or %2 cycle before clock edge.

Sync Data (CPHA) CLK Polarity (CPOL) SPI Mode
on clock edge (0) Send on rise/Latch on fall (0) MODE 0
% cycle before clock edge (1) Send on rise/Latch on fall (0) MODE 1
on clock edge (0) Send on fall/Latch on rise (1) MODE 2
% cycle before clock edge (1) Send on fall/Latch on rise (1) MODE 3

Unit: Specifies the unit number.

2022.1 Embed 193

Using the Target Support Blocks and Commands

Using SPI Config for Linux

The SPI Config for Linux block lets you choose the hardware settings for the SPI Read for ARM-Linux and SPI Write for
ARM:-Linux blocks.

5Pl Configuration Properties

rit: | SPI0 w | Tranzmitted Bitz: 16

Bitrate = Clk Src/SPIDiy: 125.000 MHz

Clk. Srez: APBLCLE./2 e
SPIDw: 1 o
Sync Data: on clk edge e
CLE. Polarity: zend on rize/latch on fall w
Metwork Mode: b azter v
SPIFss Mode: Active Low b

kL Fin Agzignment

SPIMOSI: GPIO&10 e

SPICLEK: GPIOA1T w~

SPIMISO:; GPIDAS ~

SPIFss: GPIDAS -
ak. Cancel Help

Bit Rate=Clk Src/SPIDiv: Displays the bit rate.
CLK Polarity: Clocks the polarity. You have two choices: Send on rise/Latch on fall and Send on fall/Latch on rise.

Clk Src: Selects the clock for the serial port unit. Raspberry Pi runs at Advanced Peripheral Bus (APB) clock speed,
which is equivalent to core clock speed (250MHz). The supported clock speed ranges from 32kHz to 125MHz.

Mux Pin Assignment: Sets the external pins used to carry the SPI signals.
Network Mode: Indicates that the mode is set to Master. Slave mode does not work on Raspberry Pi.

SPIDiv: Specifies the divider for the system clock to set the SPI clock rate. The clock speed can be divided by any
number from 1 to 3900 for the desired speed.

Sync Data: Synchronizes the data on the clock edge or % cycle before clock edge.
Sync Data (CPHA) CLK Polarity (CPOL) SPI Mode

on clock edge (0) Send on rise/Latch on fall (0) MODE 0

194 2022.1 Embed

Using the Target Support Blocks and Commands

% cycle before clock edge (1) Send on rise/Latch on fall (0) MODE 1
on clock edge (0) Send on fall/Latch on rise (1) MODE 2
% cycle before clock edge (1) Send on fall/Latch on rise (1) MODE 3

Transmitted Bits: Sets the number of bits transmitted per transaction.

Unit: Specifies the unit number. Raspberry Pi has one SPI interface, referred to as SPIO. It also has a mini SPI interface,
referred to as SPI1.

Using the Target Interface commands

Using the Get Target Stack and Heap command

The Get Target Stack and Heap command displays the stack and heap used on the target.

Probe Target

Stack Uzed:

Heap Uzed:

Connected to part;
CPU Speed [MHz):
bultiple of Cryztal Freq:

20
1]

Done

ot
SThE2
16
s
Help

CPU Speed: Indicates the speed of the CPU.

Heap Used: Indicates the heap used on the target.

Multiple of Crystal Freq: Indicates the multiple of crystal frequency.

Stack Used: Indicates the stack used on the target.

Using the Reset Target command

The Reset Target command resets internal registers to their initial values, as defined in the Texas Instruments and

STMicroelectronics documentation.

2022.1 Embed

195

Using the TI DMC Block Set

A 16-bit and 32-bit Texas Instruments DMC block set is included with Embed. The 16-bit block set applies to the C2407
series; the 32-bit block set applies to the 28xx series.

Additional Information: Texas Instruments C2407 document.

Similarities and differences between 16-bit and 32-bit TI DMC block

Most of the 16-bit Texas Instruments DMC blocks use 1.16 scaling, which means you use inputs between -1.0 and
0.9997. Most of the 32-bit Texas Instruments DMC blocks use 8.32 scaling, which means that you use inputs between -
256 and 255.99999.

ACI Motor

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: NO

The ACI Motor block implements a discrete equivalent of a 3-phase induction motor using trapezoidal approximation with
predictor-corrector. The induction model is normalized by the adjustable base quantities of voltage, current, torque,
frequency, and flux linkage. The induction motor is modeled in the stationary reference frame. The outputs of this module
are the stator currents, rotor flux linkages, electromagnetic torque, electrically angular velocity, and actual rotor speed in
rpm. These outputs are in per-unit except the actual rotor speed.

2022.1 Embed 197

https://www.ti.com/product/TMS320LF2407A#tech-docs

Using the TI DMC Block Set

AC| Motor Properties

Fotor Resistance - Br [Ohm): |E |
Statar Besiztance - Bs [Ohm]; | 0 |
Statar Leak age Inductance - Lz [H]: | 1] |
Raotar Leakage nductance - Lr [H]: |EI |
Magnetic Inductance - Lm [H]: ||:| |
Baze Curent - [B [A] |EI |
B aze Phaze \olkage - Vb [V]: | 1] |
Baze Torgue - Th [Mm]: 1]

Basze Flux Linkage - Lb Meecrad): 1]

Baze electic ratation speed - Wh [r/z) |IZI |

MHumber of Poles - p |':| |
Dramping factar - B [Mm secdrad] I
toment of Inertia - J [kg.m™2] I

tdakar Cantraller

Sample interval - Tz [zec] 1]

ok, Cancel Help

Base Current: Indicates the maximum current flow at the rated load.

Base Electric Rotation Speed: Indicates the maximum target rotation.

Base Flux Linkage: Indicates the base flux linkage.

Base Phase Voltage: Indicates the base phase voltage.

Base Torque: Indicates the base rated torque.

Damping Factor: Indicates the damping factor.

Magnetic Inductance: Indicates the magnetizing inductance of the load. Specify this value in henries.
Moment of Inertia: Indicates the inertia of the rotor.

Number of Poles: Indicates the number of poles in the motor.

Rotor Leakage Inductance: Indicates the rotor leakage inductance of the load. Specify this value in henries.
Rotor Resistance: Indicates the rotor resistance of the load. Specify this value in henries.

Sample Interval: Indicates the sampling interval of the motor controller.

Stator Leakage Inductance: Indicates the stator leakage.

Stator Resistance: Indicates the stator resistance.

198 2022.1 Embed

Using the TI DMC Block Set

ACI Flux Estimator

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

The ACI Flux Estimator block implements the flux estimator with the rotor flux angle for the 3-ph induction motor based

upon the integral of back emf’s (voltage model) approach. To reduce the errors due to pure integrator and stator

resistance measurement, the compensated voltages produced by Pl compensators are introduced. Therefore, this flux

estimator can be operating over a wide range of speed, even at very low speed.

AC| Flux Estimator Properties

Fiotor Fesistance - Br [Ohm]; Proportional Gain:
0125

Stator Resiztance - RBg [Ohm]: 1.723 0 -.999)

Stator Leakage Inductance - Lz [H]: |0.166E19 Irtegral Gair:
[zampling period/rezet time]

n.aomy

tagretic Inductance - Lm [H]: 0159232 [5.96e-08 - 00390E]

Fotor Leakage Inductance - Lr [H): | 0.168964

Base Curent - |B [A] S ampling Frequency [Hz]:

Base Phase Voltage - Wb [V |1a4.?52 | |2nnn |
MOTE: Greyed parameters are et in the ACI motar bBlock
ok, Cancel Help

Base Current: Indicates the maximum current flow at the rated load.

Base Phase Voltage: Indicates the base phase voltage.

Integral Gain: Indicates the controller gain proportional to integral of (cmd-ref).

Rotor Resistance: Indicates the rotor resistance of the load. Specify this value in henries.

Magnetic Inductance: Indicates the magnetizing inductance of the load. Specify this value in henries.

Proportional Gain: Indicates the controller gain proportional to (cmd-ref)Stator Resistance: Indicates the stator
resistance.

Rotor Leakage Inductance: Indicates the rotor leakage inductance of the load. Specify this value in henries.
Rotor Resistance: Indicates the electrical resistance of motor rotor.

Sampling Frequency: Indicates sampling rate of the control running on the target.

Stator Leakage Inductance: Indicates the stator leakage.

Stator Resistance: Indicates the electrical resistance of the stator coil.

2022.1 Embed

199

Using the TI DMC Block Set

ACI Speed Estimator

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

The ACI Speed Estimator block implements a speed estimator of the 3-phase induction motor based upon its
mathematics model. The estimator’s accuracy relies heavily on knowledge of critical motor parameters.

AC| Speed Estimator Properties

MHurnber of Poles: |

Ratar Rezsistance [Okm]: | 201

Rotor Leakage Inductance [H]: | 0162964

Baze Electical Ang. Vel [rad/s): |3?E.99111843D??E

|
|
|
Magnetic Inductance H); |n.1 £9232 |
|
|
|

S ampling Frequency [Hz]: |2EIEIEI
Cut-aff Frequency [Hz): |2|:||:|
MOTE: Greved parameters are zet in the ACI motor
block
0E. Cancel Help

Base Electrical Ang. Vel.: Indicates the rotational speed of the electrical field between poles. Number of Poles: Indicates
the number of poles in the motor.

Cut-off Frequency: Indicates the cut-off frequency of the internal low-pass filter Magnetic Inductance: Indicates the
magnetizing inductance of the load. Specify this value in henries.

Magnetic Inductance: Indicates the magnetizing inductance of the stator coil. Specify the value in henries.
Number of Poles: Indicates the number of poles in the motor.

Rotor Leakage Inductance: Indicates the rotor leakage inductance of the load. Specify this value in henries.
Rotor Resistance: Indicates the rotor resistance of the load. Specify this value in henries.

Sampling Frequency: Indicates sampling rate of the control running on the target.

Clarke Transform

Embedded Category: C2407, F280x

Block Category: Tl 16-bit DMC, Tl 32-bit DMC
d=a

200 2022.1 Embed

Using the TI DMC Block Set

_ 2b+a
LG
Operating Mode Availability

e Simulation mode: YES
e C code generation mode: YES

The Clarke Transform block converts balanced three-phase quantities into balanced two-phase quadrature quantities.

Current Model
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The ACI Current Model block infers rotor position from D and Q (park transformed) current measurements. This is useful
for sensorless control of AC induction motors.

AC| Current Model Properties

Fole Count: |E
Max Flux Speed [Rad/Sec]: |'IEIEI

Rotor Leakage Inductance [H]: |5.5

|
|
Magnetizing Inductance [H]: |n |
|
|
|

R atar Rezistance [0hms]; | 1.5
S ampling Frequency [Hz]: | 1]
ak. Cancel Help

Magnetizing Inductance (H): Indicates the magnetizing inductance of the load. Specify this value in henries.
Max Flux Speed (Rad/Sec): Indicates the maximum rotor flux speed. Specify this value in rad/sec.

Pole Count: Indicates the number of poles in the motor.

Rotor Leakage Inductance (H): Indicates the rotor leakage inductance of the load. Specify this value in henries.
Rotor Resistance (Ohms): Indicates the rotor resistance of the load. Specify this value in ohms.

Sampling Frequency (Hz): Indicates sampling rate of the control running on the target.

Inverse Clarke Transform
Embedded Category: C2407, F280x

Block Category: Tl 16-bit DMC, Tl 32-bit DMC
a=d

2022.1 Embed 201

Using the TI DMC Block Set

—d +qV3
p=—" I
2
—d—qV3
‘T

Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Inverse Clarke Transform block converts balanced two-phase quadrature quantities into balanced three-phase
guantities.

Inverse Park Transform
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
d=-Qsin@d+ D coséd
g=Q coséd+Dsing
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

The Inverse Park Transform block projects vectors in orthogonal rotating reference frame into two-phase orthogonal
stationary frame.

Park Transform
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
D =d * cos(0) + g * sin(0)
Q =-d * cos(0) + g * cos(0)
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Park Transform block converts vectors in balanced two-phase orthogonal stationary system into orthogonal rotating
reference frame.

Phase Voltage Calc

Embedded Category: C2407, F280x

Block Category: Tl 16-bit DMC, TI 32-bit DMC
cmd = command input

ref = plant measurement input

202 2022.1 Embed

Using the TI DMC Block Set

out = PID output
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Phase Voltage Calc block takes the 3-phase Space Vector Generator as input and produces phase voltages in the
time domain or DQ coordinates as output. This is useful for doing sensorless motor control.

An example of the use of the Phase Voltage Calc block can be found in the PMSM32SIM.vsm diagram under Diagrams >
Examples > Digital Motor Control.

QEP Speed

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Block Inputs

e QE: fractional value of position between zero and one. The current quadrature encoder count is multiplied by the
inverse of the maximum counts per revolution resulting in a value between zero and one.

e Dir: 1 = forward direction, -1 = backward
Block Output

e Wr: fraction of maximum speed (“Base Electrical Frequency”)
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

The QEP Speed block determines the rotational speed based on modulo-encoder tick counts.

Cuadrature Encoder Speed Properties

Base Electical Freq. [Hz]: |m |

Cantral 5ampling Fate [Hz): | 20000 |

Low Pass Cutoff [Hz]: |3n |

] Cancel Help

Base Electrical Frequency: Indicates the maximum rotational speed of the electrical field between poles.
Control Sampling Rate: Indicates sampling rate of the control running on the target.

Low Pass Cutoff: A low-pass filter is applied to the successive differencing used to determine speed from successive
QEP measurements. Speed changes above the cut-off frequency will be attenuated.

2022.1 Embed 203

PID Regulator

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
cmd = command input
ref = plant measurement input
out = PID output
Operating Mode Availability
e Simulation mode: YES

e C code generation mode: YES

The PID Regulator block implements a fixed-point PID controller.

PID Properties

Kp: | | 128, 127.939
Ki |n.nm | 128 ..127.993
Kd: |n.nnm | 128 ..127.993
Ke: |n.1 | 128 .127.993
Upper Limit: |0.93397 | 128..127.959
Lower Limit; |-1 | 128 ..127.993

[]Uze External Gains

Cancel Help

Kc: Indicates the speed at which the PID value comes out of a saturated limit condition.
Kd: Indicates the controller gain proportional to derivative of (cmd-ref).

Ki: Indicates the controller gain proportional to integral of (cmd-ref).

Kp: Indicates the controller gain proportional to (cmd-ref).

Lower Limit: Indicates the lower limit on both output and integral state.

Upper Limit: Indicates the upper limit on both output and integral state.

Use External Gains: Lets you use external gains rather than Kp, Ki, Kd, and Kc.

Ramp Generator

Embedded Category: C2407, F280x

Block Category: Tl 16-bit DMC, Tl 32-bit DMC
freq = frequency of ramp

offset = DC offset

gain = gain of generated ramp signal

Using the TI DMC Block Set

204

2022.1 Embed

Using the TI DMC Block Set

Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Ramp Generator block generates periodic ramp output of adjustable gain, frequency, and dc offset. The Ramp
Generator block has been retired in v2016.3; however, it is more efficient to use the fixed-point Ramp16, Ramp32, and
Ramp32-variable freq blocks under Diagrams > Toolbox > Fixed Point.

Ramp Generator Properties

DSP Sampling Frequency [Hz): | |

Ranip Frequency [Hz): | 1.52539021 8966964 |
[nitial W alue: | 0 |
aFk. Cancel Help

DSP Sampling Frequency (Hz): Specifies the sampling rate of the control running on the target.
Initial Value: Specifies the initial value of the ramp.

Ramp Frequency (Hz): Specifies the repetition rate of the ramp.

Resolver Decoder
Embedded Category: F280x
Block Category: Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

2022.1 Embed 205

Using the TI DMC Block Set

The Resolver Decoder block lets you decode two sinusoidal resolver signals into a single position.

Resolver Pasition Estimator Properties

Lo Pazs FIR filker Coefficients

Pale Count: order Coef
Zero Cross Count: 0 1.5999923938=-005
1 2 771 24726846005
Control Sample Rate: 112000 2 4.0011068387.-005
Rezalver Excitation Rate: | 3000 3 B.B33193793e-005
4 9.9511178341&-005
Base Frequency: 5 0.00071 331 76887744
- 5 0.000716344231 9334

Angle Calibration: -0.085
itk et 7 0.00018621994591 8
8 0.000198433521907

Cancl Help

Angle Calibration: Indicates the angle calibration.

Base Frequency: Indicates the base frequency.

Control Sample Rate: Indicates the control sample rate.

Pole Count: Indicates the number of poles in the motor.

Resolver Excitation Rate: Indicates excitation rate of the resolver.

Zero Cross Count: Indicates the zero-cross count.

SMO Position Estimator

Embedded Category: F280x
Block Category: Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

206

2022.1 Embed

Using the TI DMC Block Set

The SMO Position Estimator block uses phase currents to estimate the rotor position. This block is useful in sensorless
motor control.

Sliding Meode Observer Position Estimator Properties
Statar B esiztance [Ohms]; 1.4
Stator inductance [H] 0.00435
B aze Curent [&mps) g
B ase phase voltage [valts] 185
S ampling Frequency [Hz]: I
K.zlide 185
K.alf 185
] 4 Cancel Help

Base Current: Indicates the maximum current flow at the rated load.

Base Phase Voltage: Indicates the base phase voltage.

Kslf: Indicates the sliding control filter gain.

Kslide: Indicates the sliding control gain.

Sampling Frequency: Indicates sampling rate of the control running on the target.
Stator Inductance: Indicates motor parameters.

Stator Resistance: Indicates the stator resistance.

Space Vector Generator (Magnitude/Frequency)
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC

Block Inputs

e Frequency: Fractional value to be multiplied by the sample frequency/6 to determine the frequency of the output
waveforms (using a frequency scaling of 1).

e Gain: Specifies the amplitude of the output waveforms.
Block Output

e Va, Vb, Vc: Three-phase voltage outputs suitable for driving PWM-based motor control.
Operating Mode Availability

e Simulation mode: YES

e C code generation mode: YES

The Space Vector Generator (Magnitude/Frequency) block calculates the appropriate duty ratios needed to generate a
given stator reference voltage using space vector PWM technique. The stator reference voltage is described by its a,
Bcomponents.

2022.1 Embed 207

Using the TI DMC Block Set

Space Vector Wave Form Generator Properties

Offset |m |

Frequency Scaling: |EI.'I b |
=

Frequency Scaling: Indicates sampling rate of the control running on the target.

Offset: Indicates the offset that is used in the calculation of the signal.

Space Vector Generator (Quadrature Control)
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, TI 32-bit DMC
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Space Vector Generator (Quadrature Control) block calculates the appropriate duty ratios needed to generate a given
stator reference voltage using space vector PWM technique. The stator reference voltage is described by its magnitude
and frequency.

Space Vector PWM

Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability

e Simulation mode: NO

e C code generation mode: YES

The Space Vector PWM block computes a timer period value based on the CPU frequency and the value entered for the
Carrier Frequency in the Space Vector PWM Properties dialog box. For example, a carrier frequency setting of 30kHz for
a 30MHz CPU yields a timer period of 1000.

The top three inputs (a, b, and c) dynamically determine the duty cycle of each of the six PWM outputs by assigning the
proper fraction of the timer period to the compare register. An input value on pin a, b, or ¢ of —1 gives 0% duty cycle; an
input value of 0.99999996 gives 100% duty cycle and the PWM varies linearly in between. If 0.5 is supplied to the first
input, the compare register would receive 750. The signal on PWM1 would be ON for 750 CPU clock ticks and OFF for
250 CPU clock ticks. If zero is supplied to the first input, the compare register would receive 500. The signal on PWM1
would be ON for 500 CPU clock ticks and OFF for 500 CPU clock ticks.

PWM outputs 2, 4, and 6 are the inverse of PWM outputs 1, 3, and 5, respectively.

The fourth block input (period) is intended for dynamically modulating the carrier frequency. An input value of 0.8 reduces
the period by a factor of 0.8%. Thus, the carrier frequency increases by 25% (1/.8).

The Space Vector PWM block performs the following actions:

e Symmetrical pulse-width modulation (PWM) is used to control the inverter with GP timer 1 as PWM time base.

208 2022.1 Embed

Using the TI DMC Block Set

e PWM outputs 1, 3, and 5 control the turn-on and turn-off of the upper power devices.
e PWM outputs 2, 4, and 6 control the turn-on and turn-off of the lower power devices.

e The analog inputs are the amplified and filtered voltage outputs of resistors placed between the sources or
emitters of low-side power devices and low-side DC rail.

This also allows PWM period modulation.

Space Vector PWM Properties

Putd Frequency [Hz): | 1000

Ewvent Manager: EWbd &
Pin Action: Pdbd1.3.5 Active Hid 2.4 6 Active Lo
ok Cancel Help

Event Manager: For the 2407, you can select EVM B, which is hardwired to the GP timer 3.

Pin Action: Indicates Active Hi or Low. If pin 1 is active high, the deadband unit will cause pin 2 to delay switching high
for the deadband interval when pin 1 switches to low. If pin 1 is active low, the deadband unit will cause pin 2 to delay
switching low for the deadband interval when pin 1 switches to high.

PWM Frequency: Indicates the base modulation frequency of the PWM. Note that this block is hardwired to GP timer 1
and drives pins PWM 1 - 6.

Speed Calculator
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The Speed Calculator block calculates the motor speed based on an input time interval, such as the time between two
successive events.

The Speed Calculator block is typically used in conjunction with an Event Capture block. The output of the Event Capture
block, which represents the time interval between two successive events, is applied as the input to the Speed Calculator
block.

The Speed Calculator block determines a 32-bit scaled fixed-point speed of the motor based on the input time interval. To
maximize the precision of the calculated speed, you need to know the minimum counts per event interval. You simply
enter the minimum counts per event interval that you expect to see (which corresponds to the maximum speed you can
measure). In return, Embed automatically calculates the motor speed as a fraction of the maximum speed. The maximum
speed is device dependent, based on the actual motion hardware you are using.

2022.1 Embed 209

Using the TI DMC Block Set

Speed Calculator Properties

kin Event Interval Count: 'II:II:

Block output iz the fraction of the max speed represented
by the minirmurm intersal count bebween bwo events.

] LCancel Help

Min Event Interval Count: Indicates the minimum counts per event interval you expect to see.

VIHz Profile Generator
Embedded Category: C2407, F280x
Block Category: Tl 16-bit DMC, Tl 32-bit DMC
The maximum input frequency is normalized to 1. Block input (fin) is a fraction of the maximum frequency.
fin S LFP:Voyr = Vipp
LFP < f;, S HFP:Vypp + (fin — Vipp) * slope
fin > HFP:Voye = Vipp
Operating Mode Availability
e Simulation mode: YES
e C code generation mode: YES

The V/Hz Profile Generator block generates an output command voltage for a specific input command frequency
according to the specified V/Hz profile. This is used for variable speed implementation of AC induction motor drives.

Volt /Hertz Profile Properties

High Frequency Paint [HFF); |m

Loww Frequency Paint [LFP): |I:I.'I 25 |

Woltage at HFF: ||:|_3?5 |

Voltage at LFP: ||11 25 |

Slope of Yalts/Hertz Profile: |-| |
ok, Cancel Help

High Frequency Point: Indicates HFP.

Low Frequency Point: Indicates LFP.

Slope of Volts/Hertz Profile: Indicates slope.
Voltage at HFP: Indicates VHFP.

Voltage at LFP: Indicates VLFP.

210 2022.1 Embed

Using the Tl MotorWare Block Set

The T MotorWare blocks let you easily set up and use the Texas Instruments InstaSPIN technology.

Angle Estimator
Block Category: TI MotorWare
Block Inputs
e vbus: Bus voltage scaled to unity. The value 1 is nominal bus voltage.
e iaand ib: Clarke Transform 3-phase current measurement scaled to unity for the peak current.
e vaand vb: Clarke Transform 3-phase voltage measurement scaled to unity for peak voltage.
You use the Angle Estimator block to define parameters for the motor, motor controller, and motor identification algorithm.

To use the Estimator Read Property or Estimator Write Property blocks, you must have either a Motor Control or Angle
Estimator block in your diagram.

2022.1 Embed 211

Using the Tl MotorWare Block Set

TIMotorWare Block Properties
Contraller: 0 ~ | Motorw are F28085 [\/1pE) ~
Parameter Walue Description
igFullS caleCurent_A 10 Max current(d)
igFullScaleolkage_ 24 M.aximum pozsible [peak] voltage
igFullScaleFreq Hz a0 Max Frequency
il srTicksPerCiTick 1 Mumber of ISR ticks per controller zample
rumChlTicksPerCurentTick 1 MNumber of contraller zamples per current controller zample
numCHlTicksPerEstTick 1 Mumber of controller samples per position estimator sample
rumChlTicksPerSpeedTick 15 Mumber of contraller samples per speed contraller sample
rumChlTickzPerTraTick 15 Mumber of controller samples per trajectory zample
rumCurrents ensors 3 MNumber of current zensors [2 ar 3]
numoltageSensors 3 Mumber of voltage senzors [2 or 3]
offsetPole_rps 20 Pole location for current and voltage offset filkers [Rad/s]
fluxPole_rpz 100 Pole location for flux estimation filker [Fad.sz)
zeroSpeedLimit 0.002000000095 Zero speed threshhold
forcefngleFreq Hz 1 Force Angle Freg
maxdcoel Hzps 20 Max Acceleration (rad/sec™2)
maxdccel_est_Hzps i} Max Acceleration during estimation [rad/sec”2)
directionPaole_rps B Pale lacation for direction filker [Rad/z)
speedPale_rps 100 Pole location for speed control filker [Rad/s]
dcBuszPole_rps 100 Paole location for DC bus filker [Rad/s)
flusFraction 1 Flux fraction to uze during inductance identification (0. 1)
indE st_speedh axFraction 1 Max gpeed to uze during inductance identification (0 .. 1)
epli ain 1 Efficient partial load gain for Id reference
spstemFreq MHz a0 Swstem clock [MHz]
pwmPeriod_usec 22222237 P period [microsec)
voltage_sf 2763333321 ‘Yoltage scale factor
arrmanb AF 1 Fannnnnia RTINSO
< >
Cancel

Controller: Indicates the controller. This value must match the Controller value in the Estimator Read and Estimator Write

blocks.

MotorWare: Specifies the version of MotorWare.

Parameter, Value, Description window: Lists the editable motor, motor controller, and motor identification algorithm
values. To change the value of a parameter, double click on the value. For more information on the motor, motor
controller, and motor identification algorithm values, see the Texas Instruments InstaSPIN documentation.

Controller Read Property

Block Category: Tl MotorWare

The Controller Read Property block reads a property of the Texas Instruments motor drive software.

Controller Read Property

Contraller: 0

Froperty:

CTRL_getCaount_current

Pt

Cancel

Controller: Indicates the controller instantiation number (0 or 1). This value must match the Controller value in the Motor

Control block.

212

2022.1 Embed

Using the Tl MotorWare Block Set

Property: Specifies the property. For more information on the properties, see the Texas Instruments documentation.

Controller Write Property

Block Category: Tl MotorWare

The Controller Write Property block writes a property of the Texas Instruments motor drive software.

Controller Write Property >
Controller: 1] w
Property: CTRL_checkForErrors w

Corc

Controller: Indicates the controller instantiation number (0 or 1). This value must match the Controller value in the Motor
Control block.

Property: Specifies the property. For more information on the properties, see the Texas Instruments documentation.

Estimator Read Property

Block Category: Tl MotorWare

The Estimator Read Property block reads a property of the estimator.

Estimator Read Property X
Controller: 1] o
Property: EST_computelr_H ~

Corca

Controller: Indicates the controller instantiation number (0 or 1). This value must match the Controller value in the Angle
Estimator block.

Property: Specifies the property. For more information on the properties, see the Texas Instruments documentation.

Estimator Write Property

Block Category: TI MotorWare

2022.1 Embed 213

Using the Tl MotorWare Block Set

The Estimator Read Property block writes a property of the estimator.

Estirnator Write Property >
Contraller: n e
Property: EST_resetCounter_ctil ~

Cancel

Controller: Indicates the controller instantiation number (0 or 1). This value must match the Controller value in the Angle
Estimator block.

Property: Specifies the property. For more information on the properties, see the Texas Instruments documentation.

Motor Control
Block Category: TI MotorWare
Block Inputs
e vbus: Bus voltage scaled to unity. The value 1 is nominal bus voltage.
e a,ib,ic: Clarke Transform 3-phase current measurement scaled to unity for the peak current.

e Va, vb, vc: Clarke Transform 3-phase voltage measurement scaled to unity for peak voltage.

214 2022.1 Embed

Using the Tl MotorWare Block Set

You use the Motor Control block to define parameters for the motor, motor controller, and motor identification algorithm.
To use the Controller Read Property or Controller Write Property blocks, you must have a Motor Control block in your
diagram.

TIMotorWare Block Properties
Contraller: 0 | Motorw are F28083 [V1pE) ~
Farameter Walue Description 2
iqFullScaleCurrent_a 10 M ax current()
igFullScaleVoltage_ 24 b aximum poszible [peak] voltage
igFullScaleFreq Hz |00 tax Frequency
numlerTicksPerChlTick 1 Mumber of ISR ticks per contraller sample
numCHlTicksPerCurment Tick 1 Mumber of contraller zamples per curent contraller sample
numChlTicksPerE stTick 1 Mumber of controller samples per position estimator zample
numCHiTicksPerSpeedTick 158 Mumber of controller samples per speed controller zample
numChlTicksPerTraTick 15 Mumber of controller zamples per bajectory sample
numCurrentSenzors 3 Mumber of current zengors [2 or 3]
numv oltageS ensors 3 Mumber of voltage sensors (2 or 3]
offzetPole_rps 20 Puole location for current and voltage offzet filters [Rad/s]
flusPole_rps 100 Puole location for flus estimation filter [Rad/s]
zeroS peedLimit 0.002000000095 Zero speed threshhold
forcedsngleFreq Hz 1 Force Angle Freqg
mawdcoel Hzps 20 Max Acceleration [rad/sec™2]
mawdccel_est_Hzps 5 Max Acceleration during estimation (rad/sec™2]
directionPole_rps E Puole location for direction filker [Fad/s]
speedFole_rpe 100 Pale lacation for :peed contral filker [(Rad/s)
dcBusPole_ps 100 Pale location for DC bus filker (Flad/s)
flusFraction 1 Flu fraction to uze during inductance identification (0. 1]
indE st_zpeedhd axFraction 1 Max speed to uze during inductance identification [0 .. 1]
eplGain 1 Efficient partial load gain for |d reference
syztemFreq MHz a0 System clock [MHz)
pwmPeriod_uzec 222222137 Pt period [microsec)
voltage_sf 2763333341 “Woltage zcale factor v
ETRTTENN N 1 Fannnnnd o Termanb mmmlm Fombmr
£ >
Cancel

Controller: Indicates the controller. This value must match the Controller value in the Control Read and Control Write
blocks.

MotorWare: Specifies the version of MotorWare.

Parameter, Value, Description window: Lists the editable motor, motor controller, and motor identification algorithm
values. To change the value of a parameter, double click on the value. For more information on the motor, motor
controller, and motor identification algorithm values, see the Texas Instruments documentation.

2022.1 Embed 215

Using the Fixed Point Block Set

The Fixed Point block set includes blocks and added capabilities to existing blocks to simulate the effects of scaled fixed-
point arithmetic.

Fixed Point block set

The Fixed Point block set — listed under the Blocks menu — consists of 30+ blocks that let you design and simulate the
performance of fixed-point algorithms prior to code generation and execution on an embedded platform.

When you insert a fixed-point block into a diagram, the block displays specific information about the block. For example,
the const block appears as follows:

1@md.16

e 1: Indicates the const value
o fx: Indicates fixed point

e 4.16: Indicates the fixed-point format, with 16 total bits and 4 bits to the left of the radix point. represents the
const value

e Yellow connector: Indicates Scaled Int. To display connectors, activate Connector Labels and Data Type in
the View menu.

The Fixed Point Const dialog box lets you manipulate the const value, word size, and radix point.

T N

Fixed Point Const Block Properties

F adix Point [bits]: | 4 - “Whord Size [bitz) (16 =
Representable Range: -8.0000000000.. 7. 33975585934

Consk 1

Auto scale Minal Seen: 0O

| Wwarn on averflaow baxal Seen: 0O

k. | Cancel | | Help

2022.1 Embed 217

Using the Fixed Point Block Set

The dialog box also shows the Representable Range; that is, the range of acceptable values based on the Radix Point
and Word Size parameters. Increasing the Radix Point value increases the range; decreasing the value, decreases the
range.

The Learning Center provides several fixed-point videos to help get you started using the Fixed Point block set.

less than

_{1ifx1<x2
T0ifxy = x,

The less than (<) block produces an output signal of 1 if and only if input signal xi is less than input signal x2. Otherwise,
the output is 0. On the connectors, “I” represents x1 and “r’ represents xa.

If you right click the < block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Simple if-then-else construct
Consider a variable y such that:
Ift<4theny=1;elsey=0

Assume that t is simulation time. This system can be realized as:

Ly(t) =] B2

Titme (sec)

By multiplying a constant value one with the output of the < block, y is guaranteed to assume a value of zero until the
inequality is true. When the inequality is true, y assumes a value equal to the output of the * block.

2. Modified if-then-else construct

The previous example can also be realized as:

y(t) =] B2
2
i p If.. b 1
t j E'; merge —mw{y — |
1 1 1 1 1
Then... o 2 4 & 8 10
Else Time (sec)

The key difference in implementation is the use of a merge block rather than a * block. The merge block explicitly depicts
the if-then-else structure; the * block is a shortcut and can lead to confusion.

218 2022.1 Embed

https://learn.solidthinking.com/embed-videos/

Using the Fixed Point Block Set

less than or equal to

_{1ifx1Sx2
- 0fo1>x2

Block Inputs: Two scalar inputs.

The less than or equal to (<=) block produces an output signal of 1 if and only if input signal x1 is less than or equal to

input signal xz. Otherwise, the output is 0. On the connectors, “I” represents x1 and “r” represents x..

If you right click the <= block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Simple if-then-else construct
Consider a variable y such that:
If x<0.5theny =cos(3t); elsey =0

where t is simulation time. Let x be a unit step delayed by 7s, represented as u(t - 7). This system can be realized as
shown below.

y(t) =] 3
2
ut - 7) If ¢ x <= 0.5)
- byl :
P N T
o]
Else... -1 1 1 I 1
8] 2 4 5] 3 10
Then... Time (sec)
ix{t) and cos(3t) Bi= E
3 cos B 2
t 3t cos(3t) 1
ANANANA / \
e AVIRVIRVARV:
8] 2 4 5] 2 10
Titme (sec)

Until the onset of the step input at t = 7s, the Boolean inequality x < 0.5 evaluates to true, and y takes on a value of
cos(3t). At t = 7s, the Boolean inequality evaluates to false and remains false for the duration of the simulation.
Consequently, from this point onwards, y takes on the value of 0. The lower plot block monitors the outputs of the cos and
variable x blocks.

equal to (==

_{1fo1=x2
y= Oifxl;txZ

Block Inputs: Two scalar inputs labeled “I” (for x1) and “r’ (for x2).

The == block is useful for evaluating the Boolean == equality. The output of the == block is one if and only if input “I” is

identically equal to input “r;” otherwise, the output is zero.

If you right click the == block, the Boolean block menu appears allowing you to assign a different function to the block.

2022.1 Embed 219

Using the Fixed Point Block Set

Boolean equality comparisons of floating-point variables and non-integer constants: As with programming in any
language, it is generally not a good idea to perform Boolean equality comparisons involving floating-point variables and
no-integer constants. These types of comparisons should be converted to Boolean inequality comparisons. For example,
{If position is equal to =, then ...} should be converted to {If position is greater than or equal to < nroundedoff>, then ...}.
The reason for this is because a floating-point variable, such as position, is rarely exactly equal to a non-zero non-integer
value, particularly if it is obtained by solving one or more equations.

Examples

1. Comparing constants
Consider a variable y such that:
Ifx=0.5theny =cos(2t);elsey=0

where t is simulation time. Let x be a step function of amplitude 0.5, delayed by 3s. This is usually represented as 0.5
u(t - 3). This system can be realized as shown below.

y(1) o] x
2
0.5ult-3) If (x— 0.5)
_ by i
| =
t
415} merge —}E—b 0
0]
Else... -1 1 1 1
0 2 4 & g 10
Then... Time (sec)
ix(1) and cos(2t) Hi=1E
>’
t 2t cos(2t) 1 I I
. - ' -1 L 1 1
0 2 4 & g 10
Time (seq)

Until the onset of the step input at t = 3s, the Boolean equality x == 0.5 evaluates to false, and y takes on a value of 0. At t
= 3s, the Boolean equality evaluates to true, and remains true for the duration of the simulation. Consequently, from this
point onwards, y takes on the value of cos(2t). The lower plot block is used to monitor the outputs of the cos block and the
variable x.

2. Comparing a floating-point variable with a non-integer constant

In a collision detection problem, if position x of a mass in motion is equal to &, then a collision is assumed to have
occurred with an immovable wall that is located at x = ©. Furthermore, the position of the mass is assumed to be given by
the solution of the following first order differential equation:

X =sin(x))

The initial condition is assumed to be x(0) = 3.0. It is tempting to realize this system as:

220 2022.1 Embed

Using the Fixed Point Block Set

T T ey
0: Mo collision
2.141548 1. Callision
pi

abs | sin |—m{ xdat X 3.14158

position of mass: x
+ Position of mass !EIE

B R == L »[31415926533 |

position of mass: x
15k 10 decimal places
310 <
3.05
BDD | | | | | | |

0 28 ! [iis] 10 124 14 1748 20

Time (zec)

From the result shown in the plot block, at around t = 7s, the mass arrives at the boundary located at «. However, the
collision detection logic, using an == block that compares x with a constant value of &, never detects the collision. This is
because the final mass position, as obtained from the output of the integrator, is 3.141592653, which is not equal to
3.141509.

It is clear from the plot block, that for all practical purposes, the mass collided with the wall around t = 7s. To capture this
reality in the simulation, convert the Boolean equality comparison:

If x = 3.14159
Then to a Boolean inequality comparison:
If x >3.1415

Then after reducing the const block to four decimal places with no round-off, the system can be realized as:

|
—
0: Mo collision
1. Callision

abs] sin |—m] xdot X 3.14159

position of mass: x

+ Positi f
- osition of mass !EE L 3.1415926533]

position of mass: x
315 10 decimal places
a.10 <
305
SDD | | | | | | |
0 25 ol fils] 10 12.5 15 17.5 20

Time (sec)

2022.1 Embed 221

Using the Fixed Point Block Set

Except for replacing the == block with the >= block, this diagram is like the previous one. In this case, the collision
detection logic detects a collision around t = 8s. Obviously, the time at which the collision is detected depends on the
number of decimal places retained for the = approximation.

not equal to (!=)

_{1fo1¢x2
T0ifx =x,

Block Inputs: Two scalar inputs.

uln

The !=block produces an output signal of 1 if and only if the two scalar input signals are not equal. On the connectors,

“n

represents xi1 and “r’ represents Xz.

If you right click the != block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Comparing constants
Consider a variable y such that:
Ift# 0.5 then y = cos(t); elsey =0

where t is simulation time. This system can be realized as shown below.

vyl t) !E X
2
1
merge T} |
-1 1 1 1
0 5 1 15 2
Tirme (sec)
Then...
s cos(t) !E X
2
1
cos > oL
cos(t)
-1 1 1 L
8] 5 1 1.5 2
Titne (sac)

Until the value of t reaches 0.5, the Boolean inequality t # 0.5 evaluates to true, and y takes on a value of cos(t). Att =
0.5s, the Boolean inequality evaluates to false, and at the very next time step, returns to true, and remains true for the
duration of the simulation. Consequently, at the moment t = 0.5s, y takes on the value of 0, and at every other point, y is
equal to cos(t).

222 2022.1 Embed

Using the Fixed Point Block Set

greater than

_{1ifx1>x2
T0ifx; < xy

Block Inputs: Two scalar inputs labeled “I” and “r.”

The greater than (>) block is useful in evaluating the Boolean > inequality. The output of the > block is 1 if and only if input

ul » 7]

> input “r;” otherwise the output is 0.

If you right click the > block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Simple if-then-else construct
Consider a variable y such that:
Ift>2theny=7.2;elsey=0

Assume that t is simulation time. This system can be realized as shown below.

sy(t) =] B
8

Tirme (sec)

By multiplying a constant value of 7.2 with the output of the > block, y is guaranteed to assume a value of zero until the
inequality is true. When the inequality is true, y assumes a value equal to the output of the * block.

2. Modified if-then-else construct

Using the above equation, it can also be realized as:

s y(t) _ o] =
8
6
[.

t —Eb merge —m v |—
2
O 1 1 1
Then... 0 2 4 6 g 10
Else Time (sec)

The key difference in implementation is the use of a merge block rather than a * block. The merge block explicitly depicts
the if-then-else structure, whereas the * block is a shortcut and can lead to confusion.

greater than or equal to

_{1ifX12xZ
- 0fo1<x2

Block Inputs: Two scalar inputs.

2022.1 Embed 223

Using the Fixed Point Block Set

The greater than or equal to (>=) block produces an output signal of 1 if and only if input signal x1 is greater than or equal
to input signal x2. Otherwise, the output is 0. On the connectors, “I” represents x1 and “r’ represents xo.

If you right click the >= block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Simple if-then-else construct
Consider a variable y such that:
Ifx>0.5theny =sin(t); elsey =1

where t is simulation time. Let x be a unit step delayed by 3s. This is usually represented as u(t - 3). This system can be
realized as shown below.

y(t) _ O] %

2
ut - 3) 1 If (x>= 0.5)]
- by,
t
»| erse | »T]—>
f U
L=
Else... 1 1 1 1 1
o] 2 4 & 2 10
Time (sec)
Then...
ix(t) and sin(t) M=
2
sin [
t gin{ 1) 10
; Q\
.- > -1 1 1 1 1
0 2 4 5] 2 10
Time (sec)

Until the onset of the step input at t = 3s, the Boolean inequality x > 0.5 evaluates to false and y takes on a value of 1. At t
= 3s, the Boolean inequality evaluates to true and remains true for the duration of the simulation duration. Consequently,
from this point onwards, y takes on the value of sin(t).

-X (negate)
y=-Xx
Block Inputs: Scalar, vector, or matrix.

The -X block negates the input signal.
Examples

1. Negation of a scalar

Consider the equation y(t) = - sin(t), which can be realized as shown below.

224 2022.1 Embed

Using the Fixed Point Block Set

5

1
negate y(t) = -sin(t)
»] o yit)] p "
-1 |]
0 1 2 3 4

Time (zec)

i PLOT =1

1
t sinit)
[—] sin b .
-1]]] |
a 1 2 3 4]

Time (sec)

A ramp block is used to access simulation time t, a sin block generates sin(t), and a -X block converts sin(t) to -sin(t). Both
sin(t) and y(t) are plotted for comparison.

2. Negation of a vector
Consider the equation:
z=-X

where x = [-1 5.6 4]. This equation can be realized as:

-1 f——W5-N 1

Tl o A e D s < e 55
4 ——m3 -4

A scalarToVector block creates a three-element vector from the constant values -1, 5.6, and 4. When the simulation runs,
the —X block performs an element-by-element negate operation on the incoming vector.

2022.1 Embed 225

3. Negation of a matrix

Consider the equation:

Z=-X
where
2 -56 4
X=|-12 21 =386
1 -87 64

-2 5.6 -4
1.2 -2 3.6
-1 8.7 H.4

Using the Fixed Point Block Set

When the simulation runs, the —X block performs an element-by-element negate operation on the incoming matrix.

abs

y = x|

Block Inputs: Real, complex, or fixed-point scalars, or vectors or matrices.

The abs block produces the absolute value of the input signal.

-

abs Properties

Label:

o

L

Label: Indicates a user-defined block label.

Examples

226

2022.1 Embed

1. Absolute value of a scalar

Consider the equation y = abs (sin (t)), which can be realized as shown below.

Using the Fixed Point Block Set

{ SINIT) (=] E3
1
. 1110t o
- sin(t) >
t
-1]]]]
0 2 4 & g 10
Tirmne (sec)
{¥ = ABS (SIN (T)) O] x|
1.0
vy =abs (sinit))
el
p{dbs by >
|:| | | | |
0 2 4 & g 10
Time (sec)
The results in the two plot blocks show that the abs block computes the absolute value of the input signal.
2. Absolute value of a vector
Consider the equation:
w = abs (x)
where x = [-7 1 -2.2]. This equation can be realized as:
T|—> S-34 7
1 ——m2 abs 1
(22— 22

When the simulation runs, the abs block computes and outputs an element-by-element absolute value of the vector x.

2022.1 Embed

227

Using the Fixed Point Block Set

3. Absolute value of a matrix
Consider the equation:
Z = abs(Q)

where

-7 1
Q=L2 —1J

This equation can be realized as shown below.

7 1
abs 7] > 72 33

Four const blocks provide the vector element values of Q through a scalarToVector block. When the simulation runs, the
abs block computes the element-by-element absolute value of the incoming matrix.

and

y = x; bitwise ANDx,

Block Inputs: Real, complex, or fixed-point scalars, or vectors or matrices.
The and block produces the bitwise AND of 2 - 256 scalar input signals.

If you right click the and block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

228 2022.1 Embed

Using the Fixed Point Block Set

1. Three variable and
Consider a variable y such that:
Ifaz6andb>22andc<7, theny=cos(); elsey=0

where t is simulation time. Furthermore, let t be the input to all three parameters a, b, and c. This system can be realized
as shown below.

fy(t) (O] x

1.0
@—%j > °r
merge [7 }—» °
.5
.- 1.< _10 1 1 1 1
8] 2 4 5] 2 1

Time (sec)

 cos() [_[O] x|

1.0
5
)-E o8 = ¢
-5
1.0 1 1 1 1
0 2 4 6 2 10

Time (sec)

nl

o

The output of the and block is true only when all the three inputs are true. This happens in the range t = (2.2, 7), except
for the instant t = 6. This result is apparent from the top plot block. The variable y is equal to cos(t) in the range t = (2.2, 7).
At the instant t = 6, variable a is momentarily false, and consequently, y = 0 at t = 6, since the output of the and block
evaluates to false at that instant.

2022.1 Embed 229

Using the Fixed Point Block Set

atan2
Block Inputs: fx1.16 or fx1.32 format.

The atan2 block computes the four-quadrant inverse tangent (arctangent) of the input signals in scaled fixed-point
notation. The block will automatically take on x1.16 or fx1.32 based on the data type of the input signal. The atan2 block
uses the signs of both input signals to determine the output signal. The block output is in “per unit” angles. This means the
angle output is implicitly divided by 21T so that a cycle of sin/cos input will produce a value sweeping from zero to one
(instead of zero to 21). Typically, this block is fed by a sin/cos sensor input to produce a “per unit” angle value.

const

The const block generates a constant signal in scaled fixed-point notation.

-

Fixed Point Const Block Properties

Radix Point [bitz]: | 4 - “Word Size [bitz): [16 =
Feprezentable Range: -8.0000000000,.7 93975585594

Consk 1

Auta scale kin%al Seen: 0O

| wharn an overflow Max Wal Seern: 0

ok | Cancel | | Help

LS

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

Const: Indicates the value of the output signal.

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.

Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate the Enable Overflow Alert Messages
in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override Word
Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu. Most embedded
targets use 16- or 32-bit word size.

230 2022.1 Embed

Using the Fixed Point Block Set

convert

The convert block converts the data type of the input signal to one of the following: char, unsigned char, short, unsigned
short, int, long, unsigned long, float, double, void*, enum Comboltem, matrix double, scaled int, string, complex structure,
or matrix complex. To check for overflow errors, activate Warn Numeric Overflow under the Preferences tab in the
dialog box for System > System Properties.

r—Cu::ur'mns_'rtTl::u @1

Iduuble v]

(=]
1
[=F]

ok [oo) [0]

L

Radix Point: This parameter lights up only when Scaled Int is selected. It represents the number of bits provided for the
integral part of the number. The difference between the word size and the radix point represents the mantissal (or
fractional part of the number).

Word Size: Sets the word size for the target architecture. The word size can be overridden using the Override Word Size
option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

cos
y = cosx
Block Inputs: fx1.16 or fx1.32 format.

The cos block produces the cosine of the input signal in scaled fixed-point notation. The block automatically uses fx1.16
or fx1.32 based on the data type of the input signal. The input signal is represented in “per unit” angles. This means the
angle input is implicitly multiplied by 21T so that a value sweeping from zero to one will produce a complete cycle of sin
output. Typically, this block is fed by a repeating fixed-point ramp that runs from zero to one.

CRC16

Block Inputs:
enable: Must be one in order for the block to read "newVal" and apply it to existing CRC value.
reset: If it goes to 1, the internal CRC value is zero.

newVal: New value to be applied to internal CRC value.

2022.1 Embed 231

Using the Fixed Point Block Set

The CRC block performs a cyclic redundancy check (CRC) on the data and compares the resulting checksum with the
appended checksum. The CRC block lets you select the CRC method and whether the result is available via an output

pin.

CRC Properties

Unit: 0 w | CRC type: CCITT w
Right Shift W

Initial CRC value (hex): Ox0

Polynomial: 0x0

CRC output pin

o Gancel

CRC Output Pin: Indicates current 16-bit CRC value.

CRC Type: Indicates the CRC method. Choose among CCITT, ANSI, and DECT. These methods are described in
Wikipedia under Cyclic Redundancy Check.

Initial CRC Value (hex): Indicates initial 16-bit CRC seed.
Polynomial: Indicates polynomial word.

Unit: Each unit maintains an internal CRC buffer. If you need multiple concurrent CRC streams, make sure each one has
a unigue unit number.

div

The div block produces the quotient of two inputs in scaled fixed notation.

' N

Fixed Point Div Bleck Properties

F adix Point [bits]: | 4 - Word Size [bitsl. |16 =
Reprezentable Range: -3.0000000000.. 7. 935975538594

[At soale MitWal Seen: O
“Warn on overflow MawVal Seen: 0

o) [Ee

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

L

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.
Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

232 2022.1 Embed

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Using the Fixed Point Block Set

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate the Enable Overflow Alert Messages
in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override Word
Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

gain

The gain block multiplies the input signal by the gain amount in scaled fixed notation.

. N

Fixed Point Gain Block Properties

R adix Paint [bitz]: | 4 - Wiord Size [hitsl, (16 =
Reprezentable Range: -8.0000000000..7 3337553594

Gaim: 1

[T] Ao scale Min¥al Seer: 0

Wiarn on overflow bz el Seen: 0

F, I Cancel I I Help

L

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

Gain: Indicates the constant multiplier of the input signal.

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.

Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate the Enable Overflow Alert Messages
in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override Word
Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

2022.1 Embed 233

Using the Fixed Point Block Set

limit
x1 iflb<x; <ub

y=<1b if x4 <lb
ub if x4 >ub

Block Inputs: Scalar.

The limit block limits the output signal to a specified upper and lower bound. If the input is less than the lower bound, the
limit block limits the output to the lower bound. Similarly, if the input is greater than the upper bound, the limit block limits
the output to the upper bound. If the input falls within the specified bounds, the input is transferred to the output
unchanged.

The limit block is particularly useful for simulating variables or processes that reach saturation.

' N
limit Properties

Lower Bound: I
Upper Bound: 100

Label:

Label: Indicates a user-defined block label.

L

Lower Bound: Indicates the lowest value that the output signal can attain. The default is -100.

Upper Bound: Indicates the highest value that the output signal can attain. The default is 100.
Examples

234 2022.1 Embed

Using the Fixed Point Block Set

1. Simulation of saturation

Consider a variable y such that:
¥ = sin(t}

Furthermore, assume that y reaches saturation at +0.7 and -0.7. This equation can be realized as shown below.

S

] sin P °F
sin(t) sk

-1.0

T1me (sec)
¥ =sIN(T), LIMITED TO 0.7 H=1
1.0

S
7] y—» O
lower bound: -0.7 -5+

upper bound: +0.7

| | | |
] 2 4) 2 10
Time (sec)

From the results in the two plot blocks, the output of the limit block is identical to the input, when the input is within the
bounds (-0.7 to +0.7). When the input is out of these bounds, the output is limited to the upper or lower bound values.

2022.1 Embed 235

Using the Fixed Point Block Set

limitedIntegrator (1/S)

To see the implementation of the limitedIntegrator block, right click the block.

g {1
D:01:0.01
P StirneStep convert

[>—[> set initial
condition on
1/z block: 0.0
— DD br———D
input et limits on
limit block:
-0.1 to 0.6

<<

The high and low limits are displayed on the limit block. You can set the limits in the limit Properties dialog box.

The initial condition for the limitedintegrator block is set in the unitDelay block.

merge

_ {xzif|x1| =1
T gifll <1

Block Inputs: Scalar, vector, and matrix input.

The merge block examines X; (Boolean signal) to determine the output signal. The letters b, t, and f on the input
connectors stand for Boolean, True, and False.

The merge block is particularly well-suited for performing if-then-else decisions.

P N

merge Properties

Label:

Cancel | Help

Label: Indicates a user-defined block label.

L

236 2022.1 Embed

Using the Fixed Point Block Set

mul

The mul block produces the product of the input signals in scaled fixed notation.

-

Fixed Point Mul Block Properties

F adix Point [bits]: | 4 - Word Size [bitsl. |16 =
Reprezentable Range: -3.0000000000.. 7. 935975538594

Auto scale Min*al Seen: 0

o wfarn on overflow baw Wal Seen; 0O

Cowen] [

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

L

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.

Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate the Enable Overflow Alert Messages
in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override Word
Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

not

_(1lifxy=0
y—{ 0 otherwise

The not block produces the Boolean NOT of the input signal. The output is true when the input is false; and the output is
false when the input is true.

If you right click the not block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

2022.1 Embed 237

Using the Fixed Point Block Set

1. Using a not block
Consider a variable ¢ such that:

c=b

or in other words, ¢ = not(b). Furthermore, assume that b is true if t > 2.2; else b is false, where t is the simulation time.
This system can be realized as shown below.

: b o] x

1.5

O | | 1 1
o 2 4 & g 10

Tirmne (sec)

0 L 1 1 1
8] 2 4 & g 10

Tirmne (zec)

From the outputs obtained in the two plot blocks, b, given by the output of the > block is true only when tis > 2.2. This
requires that c, which is defined to be not (b), be true only the range t < 2.2, as obtained in the bottom plot block.

or

y = x;bitwise OR x,

The or block produces the bitwise OR of two to 256 scalar input signals. The output of the or block is true when at least
one of the inputs is true. When all the inputs are false, the output is false.

If you right click the or block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

1. Computation of three inputs
Consider a variable y such that:
Ifa>8orb=6o0rc<3,theny=cos(t); elsey=0

where t is simulation time. Furthermore, let t be the input to all three parameters a, b, and c. This system can be realized
as shown below.

238 2022.1 Embed

Using the Fixed Point Block Set

»al—Lp]
=
[}
L y(1) o] x|
1.0
o ———I» b 2
[6—Fp . 0
_E.. merge v P \
-5
<= 1.0 1 1 1 1
Lyl [o 2 4 & 8 10
Time (zec)
vcos(t) !Elm
1.0
5
cos p
-5
10 1 1 1 1
o] 2 4 & 8 10
Time (zec)

During simulation, the or block evaluates to false in the interval t = (3,8), except for the instant t = 6. In this case, the
variable y takes on the value of zero. The output of or evaluates to true in the remaining parts of the simulation, and as a
result, y takes on the value of cos(t) in these periods, including the instant t = 6.

PID Regulator

For implementation, see the Texas Instruments Digital Motor Control document.

' N

PID Properties

Fropsifir Bt 54, 53.998
Integral Gain: 0.005 -1..0.9399
Detivative G air: 0.0014 -2048..2047.9
Upper Limnit; 093957 -1..0.99957
Lowser Limnit: -1 -1..0.93337

I1ze Block Inputs for Gaing

2k,] | Cancel | | Help

L

Integral Gain*dT: Indicates the integral gain pre-multiplied by the system dt. For example, for Ki = 0.5 and dt = 0.01, the
coefficient is 0.005.

Lower Limit: Indicates the lower limit of Pl output.
Proportional Gain: Indicates the proportional gain.
Upper Limit: Limits internal integrator and PI output.

Use Block Inputs for Gains: Adds additional inputs for the P (proportional) and | (integral) gains.

2022.1 Embed 239

http://www.ti.com/lit/ug/spru485a/spru485a.pdf

Using the Fixed Point Block Set

Pl Regulator

For implementation, see the Texas Instruments Digital Motor Control document.

PI Properties
Froportional Gaim: 1 -54..63.998
[ntegral Gain*dT: 0.005 -1..0.9999
Ipper Lirnit: 0.95397 -1..0.99957
Lower Lirnit: -1 -1..0.99957
[Use Block Inputs for Gains
[k.] l LCancel I l Help

Integral Gain*dT: Indicates the integral gain pre-multiplied by the system dt. For example, for Ki = 0.5 and dt = 0.01, the
coefficient is 0.005.

Lower Limit: Indicates the lower limit of Pl output.
Proportional Gain: Indicates the proportional gain.
Upper Limit: Limits internal integrator and PI output.

Use Block Inputs for Gains: Adds additional inputs for the P (proportional) and | (integral) gains.

sampleHold

_ {xz iflx;] <1
r= YpreviousOtherwise

The sampleHold block latches an input value under the control of a clock signal, x1, which is represented as Boolean input
b. When b is true, input signal x2, which is represented as input x, is sampled and held until b is true again. Boolean inputs
can be regularly or irregularly spaced.

. N

sampleHold Properties

Initial Condition: |

Label:

QK Cancel Help
ok | l)

Initial Condition: Indicates the initial condition for the sampleHold. The default is zero.

LS

Label: Indicates a user-defined block label.
Examples

1. Sample and hold with regularly-spaced clock

Consider the equation:

240 2022.1 Embed

http://www.ti.com/lit/ug/spru485a/spru485a.pdf

Using the Fixed Point Block Set

y(n) = x(t)

sampled every 0.5s. Furthermore, let x(t) be a ramp signal. This system can be realized as shown below.

pulseTrain with
a time between pulses of 0.5

' ¥IN) = X(T), sSAMPLED EVERY 0.5 sEc [H[=]

by,
| S 2

- N

0 ! 1 1.5 2
Time (sec)

As seen in the plot block, the first clock pulse occurs at 0.5s. Until this time, the output of the sampleHold block is zero. At
0.5s, the input signal is sampled and the value is used as output for the sampleHold block. The output of the sampleHold
block is held at this value until the occurrence of the next clock pulse at 1.0s. At this time, the input signal is again
sampled and the new value is presented to the output of the sampleHold block, and the process repeats itself.

2. Sample and hold with irregularly-spaced clock
Consider the equation:
y(n) = x(t)

sampled randomly. Furthermore, let x(t) be a sinusoid signal with a frequency of 2.5 rad/s. This system can be realized as
shown below.

{X(T): SINUSOID INPUT B E

1
Generation

of random clock

x(t)

-1 1 1 1
. 1 1.5 2

Titne (sec)

L}
Lh

Upper limit: 1.0 - h
Lowrer limit: 0.0 S&H

-1 1 I I

Lo}
LA

1 1.5 2

. Tirne (sec)

Sinusold input

A sinusoid block with a frequency of 2.5 rad/s generates the sinusoid signal and a gaussian block produces a randomly
varying signal. The randomly varying signal is converted to a random clock by taking the absolute value of the random

2022.1 Embed 241

Using the Fixed Point Block Set

signal and then using only the integer portion of it. The output of the int block is passed through a limit block to restrict the
signal to the range (0, 1). The output of the limit block is connected to the top input of the sampleHold block. The output of
the sampleHold block is connected to the variable y(n), which is connected to a plot block. The actual input, x(t) is

monitored separately in another plot block.
By comparing the outputs in the two plot blocks, the output of the sampleHold block is a randomly sampled and held

version of the input sinusoid.

shift
The shift block shifts the input value x by shift dist bits.

Result scaling is set in the dialog box and is independent of the input scaling.

-

Fixed Point Shift Properties

R ezult
R adix Point [bitz): | 1 = | “Word Size [bits]: (16 =

Reprezentable Range: -1.0000000000..0.99336343242

Direction: | Shift Right - |

Minal Seen: 0O
baxval Seer: 0

(oo] [

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

Direction: Selects whether the shift is left (multiply by 2) or right (divide by 2).
Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.
Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Result
Radix Point (bits): Sets the binary point.
Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override
Word Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

2022.1 Embed

242

Using the Fixed Point Block Set

sign

The sign block determines the sign of the input signal in scaled fixed notation.

-

Fixed Point Sign Block Properties

F adix Point [bits]: | 4 - Word Size [bitsl. |16 =
Reprezentable Range: -3.0000000000.. 7. 935975538594
Auto zcale MitWal Seen: O

o wfarn on overflow baw Wal Seen; 0O

Cowen] [

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

L

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.

Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate the Enable Overflow Alert
Messages in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using the Override
Word Size option in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

sin
Block Inputs: fx1.16 or fx1.32 format.

The sin block produces the sine of the input signal in scaled fixed-point notation. The block automatically uses fx1.16 or
fx1.32 based on the data type of the input signal. The input signal is represented in “per unit” angles. This means the
angle input is implicitly multiplied by 21T so that a value sweeping from zero to one will produce a complete cycle of sin
output. Typically, this block is fed by a repeating fixed-point ramp that runs from zero to one.

Example

2022.1 Embed 243

Using the Fixed Point Block Set

> HSini 16 > =10 x|

Ramp16 |‘~

-1.0 1 1 1 1 1
’ 0 25 5 a5 1 125 1.5 1.75 2

Time (sec)

sqrt

The sqrt block produces an output signal that is the square root of a positive input signal. The sqgrt block does not accept
negative inputs, and there is no square root of 0.

' ™

Label:

* ==] |

Label: Indicates a user-defined block label.

sum

The sum block adds two input signals in scaled fixed notation and produces an output.

244 2022.1 Embed

Using the Fixed Point Block Set

i© N

Fixed Point Sum Properties

R adix Poirt [bits): |4_v| word Size (bt} [16 -

Feprezentable Range: -3.0000000000.. 7. 95957558594
Auto scale Min'al Seer: 0

| wam on overflow MaxWal Seen: 0

[nput Sign

Input Count: |2 = @ + . 1 -
(el | [e)

Auto Scale: Rescales the range when either the maximum or minimum value is exceeded.

L

Const: Indicates the value of the output signal.
Input Count: Sets the number of inputs for the block.

Input Sign: Sets the sign of each input. To set the sign, select the input number from the drop-down list, then choose
either the “-” or “+” radio button. You can display the sign on the block by activating the View > Connector Labels
command.

Min Val Seen: Displays the low watermark of values that come through the block. This is a read-only field.

Max Val Seen: Displays the high watermark of values that come through the block. This is a read-only field.
Radix Point (bits): Sets the binary point.

Representable Range: Indicates the range of values based on the selected radix point. This is a read-only field.

Warn on Overflow: Activates a warning dialog box that appears when an overflow error occurs. An overflow error occurs
when a result value is outside the currently acceptable range. You must also activate Enable Overflow Alert Messages
in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

Word Size (bits): Sets the word size for the target architecture. The word size can be overridden using Override Word
Size in the dialog box for the Fixed Point Block Set Configure command under the Tools menu.

transferFunction

Aps™ + ap 15" ags + ag
y= n n-1 X
bnS + bn_15 o bls + bo

The transferFunction block executes a single-input single-output linear transfer function specified in the following ways:

e As an Mfile created with Embed: The Linearize command in the Analyze menu generates ABCD state-space
matrices from the nonlinear system by numerically evaluating the matrix perturbation equations at the time the
simulation was halted.

e As an Mfile created with a text editor: The following is an example of a user-written M file:
function [a,b,c,d] =vabcd
a=[-.396175-1.17336 ; 5.39707 .145023];
b =[-.331182 ; -1.08363];
c=[01];

2022.1 Embed 245

Using the Fixed Point Block Set

d=[0];

e As a MAT file created with MATLAB: Generating MAT files is described in the MATLAB documentation. Note
that when you save the ABCD matrices to file, the names of the matrices are not important; however, the order in
which they appear is.

When you simulate the block diagram, Embed numerically solves the transferFunction block.

You can set initial conditions for transferFunction blocks using variables. You can also reset transferFunction blocks to
zeros using the System > Reset States command.

Digital filter design: The transferFunction block supports IR and FIR digital filter design.

Setting up a transfer function: The transferFunction block’s Properties dialog box allows you to control how the
numerator and denominator polynomials are entered.

Transfer Function Properties @

Specification Method mat/ m File

@ Polynomial |IR Fitter

-

1 m File -
STapped Delay ["] Use 32 bit precision
Discrete dT: |0.01
Co o ["] Use scaled fixed point

—
u

Diigplay Fiter Method 1

[=x]

Intial Value:

Gain: 1 (lowest order state on right)

Pohmomial Coefficients
Mumeratar: 1}

Denominator: 1

Lok | [coned | [beb |

L

Display Filter Method: Displays the filter specification on the block. When Display Filter Method is not activated, Embed
displays the polynomial coefficients.

Gain: Indicates the transfer function gain. If the leading terms of the numerator and denominator coefficients are not unity,
Embed will adjust the gain to make it so. The default value is 1.

Initial Value: Specifies initial values for the states in the block. The values are right-adjusted. The right-most value
corresponds to the lowest order state. Unspecified states are set to zero.

.mat/.m File: Indicates the name of the M or MAT file to be used as input to the transferFunction block. You can type the
file name directly into this box or select one using the Select File button.
Polynomial Coefficients

Denominator: Indicates the denominator polynomial for the transferFunction block. Embed determines the order of
the transfer function by the number of denominator coefficients you enter. For example, an nth order transfer function
will have n + 1 coefficients. Separate coefficients with spaces.

246 2022.1 Embed

Using the Fixed Point Block Set

Numerator: Indicates the numerator polynomial for the transferFunction block. Separate coefficients with spaces.

Radix Point: Sets the binary point. This option can be used only when Use Scaled Fixed Point is activated.
Specification Method

Discrete: Indicates a discrete Z-Domain transfer function. Enter the time step for the discrete transfer function in the
dT box. By default, Embed uses the step size established with the System > System Properties command. When
Discrete is de-activated, a continuous transfer function is created.

dT: Specifies the time step for the discrete transfer function. By default, Embed uses step size parameter from the
System > System Properties command.

.mat File: Indicates that the transfer function is to be specified as a MAT file. Specify the name of the MAT file in the
.mat/.m File group box.

.m File: Indicates that the transfer function is to be specified as an M file. Specify the name of the M file in the
.mat/.m File group box.

Poles and Zeros: Lets you enter a transfer function via zeros and poles in the Numerator and Denominator boxes,
respectively. Enter each root in the following format:

(real-part, imaginary-part)
For large order systems, poles and zeros is more numerically accurate.

Polynomial Coefficient: Indicates that the transfer function is to be specified as numerator and denominator
polynomials. Supply the numerator and denominator polynomials and gain under the Polynomial Coefficients group
box.

Tapped Delay: Provides tapped delay implementation for high order FIR filters.
IIR Filter button: Opens the IIR Filters Setup dialog box to design a suitable filter using analog prototypes.

FIR Filter button: Opens the FIR Filter Setup dialog box to construct Regular Finite Impulse Response filters,
differentiators, and Hilbert Transformers.

Convert S ->Z button: Uses bilinear transformation to convert a continuous transfer function to an equivalent
discrete transfer function with a sampling interval of dT. Embed requests a discrete sampling rate prior to performing
the conversion.

An example of the conversion is shown below.

H(s) =

s+a
The bilinear transformation can be implemented by the substitution:

2z—-1
dTz+ 1

- S
The above transfer function becomes:

a
T)z+1y ¢
Embed automatically simplifies this representation and enters the appropriate coefficients for the numerator and
denominator polynomials.

Convert Z ->S button: Uses bilinear transformation to convert a discrete transfer function to an equivalent
continuous transfer function. For example, consider:

Z
z+b

Hyr(2z) =

The bilinear transformation can be implemented by the substitution:

2022.1 Embed 247

Using the Fixed Point Block Set

2+dTs
2,
2—dTs
The above discrete transfer function becomes:
2+dT.s

Har(S) = 320y + (aT — b.dD)s

Embed automatically simplifies this representation and enters the appropriate coefficients for the numerator and
denominator polynomials.

It is important to note that in both transformations, the results obtained are dependent on the sampling interval dT. In
other words, for a given continuous or discrete transfer function, an infinite number of equivalent discrete or
continuous transfer functions may be obtained by varying the sampling interval dT.

Use 32 Bit Precision: Simulates the behavior of the transfer function at 32-bit precision. Normally, all Embed blocks are
64-bit precision. This parameter allows you to simulate the effect of code running on a floating-point 32-bit target.

Used Scaled Fixed Point: When targeting a fixed-point processor, such as a TI-C2000, activate this option. Embed uses
scaled fixed point internal operations and will generate scaled fixed-point code.

Word Length: Sets the word size for the target architecture. This option can be used only when Used Scaled Fixed Point
is activated. Note that the word size can be overridden using the Override Word Size option in the dialog box for the Fixed
Point Block Set Configure command under the Tools menu.

Examples
—1{ & state 6. 28rad/sec High Pass Butterworth [{ G4-bit precision on PC (gl x|
Butterworth filter executing on PC 2
in native 64-bit precision 0
1> 2 N
a 2 4 5 8 10

Time (sec)

200000
0
-200000 L L : :
1] 2 4] d 10
Time (sec)

L5 state B.28rad/sec High Pass Butterworth [

Simulation of the same Butterworth filter
executing on a DSP or other target
in native 32-hit precision

b AVAVAVA AVA A S AVAVAVEA A6 A 4

This example simulates a Butterworth filter in reduced precision to simulate the effects of implementing the system on a
reduced-precision 32-bit floating-point target. To turn on reduced precision, activate the 32-Bit Precision parameter
transferFunction Properties dialog box.

unitDelay

__) Ybusfers Yburfer = xziflxll >1
y= Yprevious otherwise

248 2022.1 Embed

Using the Fixed Point Block Set

The unitDelay block specifies a clocked unit delay. The input connectors are marked b (for Boolean clock) and x (for main
signal). When the Boolean clock does not equal zero, the value contained in the single element buffer is copied to the
block output (where it holds this value until the next non-zero Boolean clock). The current value of the main signal is
stored in the unit buffer.

The unitDelay block is intended for modeling a digital delay in a continuous simulation. A typical digital delay is modeled
by wiring a pulseTrain block to the Boolean input connector of the unitDelay block. Use the timeDelay block to model a
continuous delay.

You can set the initial conditions for unitDelay blocks with variables. You can also reset unitDelay blocks to zeros using
the System > Reset States command.

. N

unitDelay Properties

Initial Condition: |[I]
ID: O
Checkpoint State: 0

Label:

Cancel | Help

Checkpoint State: Contains the value of the unit delay at the checkpoint. If you have not checkpointed your simulation
via the System > System Properties command, the value is zero.

L

ID: Reserved for future use.
Initial Condition: Sets an initial value for the output signal. The default is zero.

Label: Indicates a user-defined block label.
Examples

1. Clocking the unitDelay block

If you are working with unitDelay blocks, it is good programming practice to create a clock signal that you can use in every
simulation. A typical clock signal can be generated as shown below.

[0] > p [0k]
Time Delay Hw

ftimeStep

Time Between Pulses
Here, a pulseTrain block is assigned two external inputs:

e The top input is the time delay for the pulseTrain block. The time delay value for the pulseTrain block is the
amount of time the pulseTrain block waits before producing pulses. This time delay value must not be confused
with the amount of time delay generated by the unitDelay block.

e The bottom input is the time between pulses.

The output of the pulseTrain block is fed to the variable clock. This variable can be used anywhere in the simulation to
clock unitDelay blocks.

2. Introduction of a one-step delay

2022.1 Embed 249

Using the Fixed Point Block Set

For a given signal, a one-step delay can be introduced as:

Output delayed by PLOT ===
b one time step 06
| 1T .
04
02+
[nput
] > | | | |
n 1 02 03 .04 04
Time (sec)

During simulation, the actual and delayed signals are plotted in the plot block. The output of the unitDelay block is delayed
by one step (equal to 0.01 in this case) as compared to the input.

3. Using a multi-step delay with cascaded unitDelay blocks

To achieve multi-step delays, unitDelay blocks that implement one-step delays, can be cascaded. Consider the example
where a three-step delay is introduced.

clock synchronizes all

1/Z blocks with the sirmulation step. Outputdelayed by | EEFPee: B= =
@ by | three time steps ..
;{r 11z I
04 -
b
h L
Mz 1Z
ol 02+
] | A L 1 ! L
] .01 oz 03 .04 .05
Time {zec)

Cutput ofthree cascaded unitDelays

Three unitDelay blocks, all clocked at the simulation step, are cascaded. Since each unitDelay introduces a one-step
delay between its input and output, the output of the third unitDelay block is delayed by three steps compared to the input.
The plot block shows this behavior, with a simulation step size of 0.01.

Xor

y = x,bitwise XOR x,

Block Inputs: Scalar.

The xor block produces the bitwise exclusive OR of 2 — 256 scalar input signals.

If you right click the xor block, the Boolean block menu appears allowing you to assign a different function to the block.
Examples

250 2022.1 Embed

Using the Fixed Point Block Set

1. Using the xor block
Consider a variable y such that:
Ifa>4orc<5,theny=cos(t); elsey=0.Also,ifa>4andc<5,y=0

where t is simulation time. Furthermore, let t be the input to parameters a and c. This system can be realized as shown
below.

2
»a] Ly
il > g ||
O 1 1 1
o] 2 4 5} 2 10
N Time (sec)
| 5T “»
—Lpy merge
.5
1
z
e] S
-5
—1.0
Tlme(sec)
s cos(t) !EI
1
)E cos = 0
1 1 1 1 1
o] 2 4 6 3 10
Time (zec)

As shown in the two plot blocks, the output of the xor block evaluates to false in the interval t = (4, 5), since both the
inputs to the xor block are true in this interval. Consequently, y takes on the value of zero. The output of xor evaluates to
true in the remaining parts of the simulation, and as a result, y takes on the value of cos(t) in these periods.

2022.1 Embed 251

Using the Fixed Point Block Set

Fixed Point Block Set Configure command

The Fixed Point Block Set Configure command lets you set options on all Fixed Point blocks. This command is located
under the Tools menu.

Fixed Point Block Set Configuration

[] Override wWord Size ‘wWord Size [bits], |16~
[] Enable Auto scaling

[Rezet Fadiz Paoint at Sim Start

Enable Overflow Alert Mezsages

[J Mo Red Color on Overflow

Corce Hop

Enable Autoscaling: Turns on autoscaling for the Fixed Point blocks whose Autoscale option is activated.

Enable Overflow Alert Messages: Turns on overflow alert message for the Fixed Point blocks whose Autoscale option
is activated.

No Red Color on Overflow: Turns off coloring blocks red when overflow occurs.
Override Word Size: Overrides the local word size on all Fixed Point blocks using size specified under Word Size.

Reset Radix Point at Sim Start: Resets the radix point on all Fixed Point blocks to zero at the start of the simulation.
Typically, this option comes in handy if an algorithm starts to go unstable and the radix point is maxed out. By resetting
the radix point to zero, you have an opportunity to fix the algorithm.

Note that this option is available only when Enable Autoscaling is activated.

Word Size (bits): Sets the word size for all Fixed Point blocks for the target architecture. This size is in effect only when
Override Word Size is activated.

252 2022.1 Embed

Using the Fixed Point Block Set

Tutorials

The tutorials in this section describe how to convert floating-point implementation to fixed-point implementation. The
Learning Center provides several Fixed Point videos to help you get started using the Fixed Point block set.

Implementing an elevator door control system
Floating-Point Diagram: otis_elevator_regular

Fixed-Point Diagram: otis_elevator_fixed_point

Location: Examples > Fixed Point

A simplified elevator door control system — shown below — consists of a DC motor driving a gearbox that in turn
manipulates the door position through a series of pulleys. The controller accepts open and close commands as inputs,
and controls the magnitude and polarity of voltage that is applied to the DC motor. An encoder provides motor rotor shaft

position feedback to the control system.
reaction toréue

Reaction torgue

FY

position — control_voltage | —]{ rnotar
comrmand
Contraller
position ’ m
feedback Gearbox
: 4 Door System Dynamics
? 4

Encoder

This tutorial describes how to implement an elevator door control system in floating point, then convert the controller to
scaled, fixed point.

Floating-point implementation

To see the floating-point implementation of the elevator door control system, go to Examples > Fixed Point and open
otis_elevator_regular.

Constructing the motor

To model the DC motor, the effective voltage is the difference between the applied voltage and back-emf. The motor
armature is modeled as a simple first-order system with resistance Ra and inductance La. The motor current is limited to
+/- 10.5A.

2022.1 Embed 253

Using the Fixed Point Block Set

A |4

hotor Armature

Y, vaolts

p_]
Current Limnit
(+- 105 amps)

+
—a

To compute the back-emf, the back-emf gain Kbemf is multiplied by the angular velocity. Angular velocity is computed
using the electrical torque and load torque.

/1_|4|
L]

Motar Armature

“Wa, wolts

Current Limit
[+~ 10.5 amps)

Tload, Ib-in
thetadm, t's

A set of const blocks defines the required motor parameters. The motor angular velocity thetadm is integrated to yield
position. The electrical torque Te is computed using the motor armature current, and the 12T.MAP look-up table contains
the motor’s current-torque characteristics. This data is obtained from the motor’s specification sheets or through the
vendor. The complete motor model is shown below.

254 2022.1 Embed

Using the Fixed Point Block Set

DC MOTOR MODEL

Input Yaoltage {volts) Mator Armature

la {amps)

“Wa, volts

v

— >
Current Limit
(+- 10,5 amps)

Mmiamp gain

(12T MAP)
Te, N Te, Ib-in
thetam, rad
Tload, Ib-in P 1S P
thetadm, ris
Parameters =™
[Ra] Armature resistance, ochms
0.053 Armature inductance, henries
R 317 Back emf gain = Efrated)/Ornega(rated) —
. 1.312 Kbernf .
Load Torque (Ib-ir) TS F— » D Nméflb comversion = 110 volts/52.45 (1/s) Position (rad)

.005 {Jm | Motar Inertia
Mel— pom]

Motar Darnping

Note: The eMotor toolbox includes a full set of pre-configured, pre-tested, and ready-to-use blocks, such as motors,
amplifiers, loads, sensors, and controllers.

Constructing the gearbox

In addition to increasing or decreasing the number of output revolutions relative to the input revolutions, a typical gearbox
also introduces additional inertia, stiffness, and damping effects into the system. A basic rotational load model is
implemented below. Detailed rotational and translational models are included in the eMotor toolbox. The completed
gearbox model can be realized as shown below.

2022.1 Embed 255

Using the Fixed Point Block Set

GEARBOX MODEL

Thetam, rad
ETl - +
g *) Ly 7 . Tload, Ib-in
GR
4l
+ [
44— Bab |4
-
-
Tload, Ib-in

e Parameterg T

5000 /b stiffness Thetagh, rad
0.005 o/b inertia
[To] (B g/b damping

Cutput revolutions

.
i Gear ratio

Input revalutions

Constructing the door system

At a basic level, the door system can be thought of as an additional translational load that is connected to the motor
through an intermediate rotational load (that is, the gearbox.) As such, the door-system imposes its own mechanical
elements to the system: mass, stiffness, inertia, and damping. The input to the model is the rotation/position of the
gearbox, and the outputs are the linear displacement of the door assembly in inches and the total system mechanical load
torque in Ib-in. The simple second order dynamical model and the related system parameters can be implemented as
shown below.

256 2022.1 Embed

Using the Fixed Point Block Set

DOOR MODEL
A abs . N
-
THEZGAIN. MAP Tload (net)
{Ib-in)
abs [-T>
[
Tload (from gearbox)
{Ib-in)

door displacement

{in)

F Parameterg T

1000 Stiffness, Ibdin
[Bd -Damping, lb-s/in
Mass, lb-572fn

Two look-up tables — THE2GAIN.MAP and THETA2X.MAP — are used for easy modeling of the dependency of the load
torque aspects and the relationship between the angular gear-shaft motion and the linear motion of the door-assembly.

Constructing the encoder

A basic encoder can be modeled simply as a quantizer using the quantize block with the resolution set to 0.4.

gl

Encoder:
Cuantize block with
resolution set to .4

Constructing the controller

The controller takes two inputs: the open/close command and the actual position of the gear-shaft as estimated by the
encoder. The encoder feedback is converted into inches, the same units as the command input using simple arithmetic,
and the look-up table THETA2X.MAP gives the relationship between angular gear-shaft position and equivalent door-
assembly linear displacement as previously seen. The conversion logic is as shown below.

Gear Ratio
o it | L.
¥ -]
Theta mm:r radisec P Theta to x Conversion Table # estimate, inches
' ' (THETAZY MAP)

The error is calculated by subtracting the estimated actual door displacement from the commanded displacement. While
the absolute value of the error determines the amplitude of the control voltage to be applied, the output of the sign block is
used to determine the polarity of the voltage to be applied (that is, whether the door is to be opened or closed).

2022.1 Embed 257

Using the Fixed Point Block Set

Another look-up table (PP.MAP) determines the recommended control voltage ratio. The recommended control voltage is
converted into a ratio by scaling it with the maximum value from the table (15.5) and fed to a simple proportional control
stage represented by a gain of 110. The output of the proportional stage is sampled at 50ms to represent the physical
realities of implementing the control logic on a digital target such as a DSP or a microcontroller.

The complete controller structure is as shown below.

DIGITAL CONTROL ALGORITHM
for servo-controlled door system

®comd, inches 50 msec
el
|
Lal
Phase Plane Table Scaling Amplifier Armature Voltage Cmd, volts
(PP.MAFY

Gear Ratio

Theta to x Conversion Table X estimate, inches

(THETAZY MAF)

Constructing the open/close command

To test the system, an elevator door open-close cycle is constructed. A typical cycle is to open for 1.2s followed with a
close command. An open command means the desired door displacement is 21 inches, while the close command implies
that the desired door displacement is zero inches.

Using a ramp block to access the current value of simulated time (t) and using if-then-else logic with a merge block, you
can implement the open/close cycle as shown below.

simulation time (t)

Command Displacement
(inches)

full closed, inches |0 merge
full open, inches 21

After connecting all the subsystems and assigning variables for monitoring (control_voltage, motor_current and
reaction_torque), the system is complete.

Fixed-point implementation of the controller

When calibrating a new control design, a common way to validate a new design is to compare its performance with an
existing floating-point implementation. In the elevator_door_regular diagram, system performance of the digital control
system being designed is compared with the performance of an existing analog control system.

258 2022.1 Embed

Using the Fixed Point Block Set

E.] Door Displacement o | = 8|
| —Analog Controlled
—Digitally Controlled

=]
m

ACL.DAT

Analog Control Data

o}
[=1
I

Doar Position {inches)
-
(8]
T

10
AL
0 1 | | 1
Xdoor, inches 0 5 1 15 2 25
Time (sec)

The door displacement profile of an existing system (XCL.DAT) is brought into the simulation using an import block and
compared to the door displacement profile resulting from the current implementation.

By simulating the model, you can make refinements in the control strategy, as well as fine-tune the controller
performance.

Once it is determined that the floating-point controller is performing adequately, the next step is to implement the
controller using limited precision fixed-point blocks. This lets you simulate the behavior of the controller as it would behave
as an embedded system in a fixed-point target, such as a DSP or a microcontroller.

Converting to scaled fixed-point control

The underlying principle in converting an existing floating-point subsystem into an equivalent scaled fixed-point system is
that every input, operation, and output be configured to reflect the realities of the target. Fundamental details — such as
whether the target is an 8-, 12-, 16-, 24- or 32-bit processor — become important. As you traverse the controller
implementation, from left to right, you encounter several operations, including summation, sample-and-hold, absolute
value, sign, multiplication, constant, division, gain, and unit delay. Using Fixed Point blocks, each of these operations is
replaced with the equivalent fixed-point operator, assuming a 16-bit target.

Blocks such as unitDelay and sampleHold are fixed-point-aware; that is, they automatically adjust to the incoming data
type. Consequently, they can be used as is.

Constructing the encoder feedback

The output of variable GR_local and the output of the sampleHold block are wired into a fixed-point mul block with the
following configuration:

> GR local [*

b dt | § —,—|> 3.16
> S&H \

r *
Fixed Point Mul Block Properties

Radix Point [bits): |3 = Word Size [bits). |16 =
Representable Range: -4.0000000000..3.9998779297
[¥] Auto scale MinVal Seen: 0

[V]Warn on overflow MaxVal Seen: 0

[Cancel]

2022.1 Embed 259

Using the Fixed Point Block Set

You can choose the radix point bits or select auto scaling. This option, together with the global settings in the Tools >
Fixed Point Block Set Configure dialog box, let you automatically monitor the maximum and minimum values seen by the
block, and adjust the radix point bits to yield maximum precision while preventing numerical overflow.

l" N

Fixed Point Block Set Configuration

Overnde Ward Size “word Size [bits], |12 =
Enable Auto zcaling

[V]iReset Fadiz Point at Sim Stark

[T Enable Overflow Alert Meszages

[Mo Red Color on Overflow

[k.] [Cancel] [Help

h —

Safely maximizing the dynamic range of each computation is by far the most time-consuming component in the rapid
prototyping cycle. Fixed Point blocks reduce this tedious exercise to a few mouse clicks.

Next, the mul output is connected to an abs block to compute the absolute value, which in turn is fed into a fixed-point
gain block. The gain output is wired into a map block, which points to the look-up table data file THETA2X.MAP and has a
Scaled Int data type. THETA2X.MAP output is fed into the variable xhat.

*1@fx3.16 —>{ THETA2X MAP

JTD 3.16 / \

*

r N < ‘ N
Fixed Point Gain Block Properties Map Properties
Riadix Point (bits): word Size (bits} [16 Map Fle Name
Representable Flange: -4.0000000000..3.9998779297 THETA2X MAP
Gain: -1
Select File... Type:
V] Auto scale Min¥Val Seen: 10 [¥] Interpolate [¥] Extrapolate

@] : -
|V|Wam on overflow Max Val Seen: 0 [F] Use First Row As Pin Labels

Map Dimensions
@ 1-D Mapping ~ 2x161 [-2.75252:0]

Hep | a
Constructing the control law

The control law is constructed using fixed-point sum, mul, div, const, and gain blocks. The gear ratio GR_local is defined
as 0.043478 using a fixed-point const block. A 50ms pulseTrain defines dt. The map block points to PP.MAP and sets the
data type to Scaled Int. The resulting control law implementation is:

0K] [Cancel] [Help

2-D Mapping

3-D Mapping

J [goncel | |

260 2022.1 Embed

Using the Fixed Point Block Set

Digital Sample Time Gear ratio
=t 0.043478@fx2.16
50 msec GR local |<]

controller_voltage

X cmd, inches

Voltage
Amplifier

X estimate, inches

Completing the controller implementation

To complete the controller implementation, the control law segment is connected to the Encoder feedback segment, and
the output of the unitDelay block to the output:

DIGITAL CONTROLALGORITHM
for servo-controlled door system

implemented in scaled fixed pointThEta’ motor, rad/sec

s 1@ke 16— ——

Digital Sample Time Gear ratio
—»[@— —_—‘
e dt | 0.043478@fx2.16
50 msec GR _local |«
: o> 1z | comiater volage
Frind Jches X, controller_voltage

*110@fx8.16
Voltage
Amplifier

X estimate, inches

The two inputs to the fixed-point Controller are scaled to the correct data types using convert blocks. The convert block
connected to the encoder feedback needs a radix point precision of at least 8 bits while the convert block connected to the
command input can be 6 bits.

When this simulation is executed, the controller is implemented in 16-bit scaled precision, while the rest of the simulation
runs in double precision floating-point. This lets you simulate and validate the performance of the controller, as it would
execute on the fixed-point target.

Prototyping the embedded control system

The fixed-point controller can easily be prototyped in a hardware-in-the-loop scenario or implemented on a target
processor such as a DSP or a microcontroller. Furthermore, integrated solutions let you generate, compile, link,

2022.1 Embed 261

Using the Fixed Point Block Set

download, test, debug, and validate the entire application. This dramatically reduces development time and expenses
while resulting in a high-quality product that is well tested and very reliable.

Implementing a PID position controller
Floating-Point Diagram: position_control_regular
Fixed-Point Diagram: position_control_fixpoint

Location: Examples > Fixed Point

In most real-world cases, a scaled fixed-point-based embedded controller controls a real system, such as automotive
brake systems, machine tools, aerospace control surfaces, and other similar systems. In each case, the best way to
prototype an embedded controller is to realize the controller in scaled fixed-point implementation that is native to the
target platform. The rest of the simulation — such as sensors, plant model components, and actuators — are best
simulated in double-precision floating-point to most accurately reflect the real-world application scenario.

This tutorial examines the implementation of a PID controller for a position control application. The plant, controller, and
other arithmetic operations are first implemented in double-precision floating point. _D2HLink 12652

The system comprises an electrical motor connected to a small propeller that blows air on a paddle. The paddle is moved
at an angle from the vertical. The control problem is to adjust the speed of the motor by varying its input voltage to
maintain the paddle at a user-defined angle from the vertical. The system can be schematically represented as shown
below.

Potentiometer
Sensorto
Measure Angle

4

Actual Angle

&
(Volts) K(ﬁ
h 4

Convert Volts
to Degrees

Air Flow

Controller

Desired Angle
{Degrees)

Paddle

For the prototyping process, the fan-paddle-sensor subsystem can be collapsed into a single model, as shown below.

Volts

Desired Angle —

Controller ———m Fan-Paddle-Sensor Model

{Degrees) ™
Actual Angle Actual Angle
{Degrees) Convert Volis « {(Volts)

to Degrees

Constructing a floating-point model

The system represented above is built using standard blocks. Each of the three major components — Controller, Fan-
Paddle-Sensor Model, and the Convert Volts to Degrees — are developed, linked, and simulated.

262 2022.1 Embed

Using the Fixed Point Block Set

Constructing the controller

The controller has two inputs (desired and actual angles) and one output (voltage) to be applied to the motor.

To begin modeling the controller, wire two wirePositioners to the inputs of a summingJunction block, and negate the
second input, as shown below.

G
For ease of implementation, these blocks are encapsulated in a compound block called PID Control (CONTROLLER)
and the inputs and outputs are labeled appropriately.

—{ Siztpaint PID Control
—{ P adde Positian [degresz] (CONTROLLER)

\alts ba Matar[—

Inside PID Control (CONTROLLER), the output of the summingJunction is passed through a gain of 0.001 and fed as the
error input for computing P (proportional), | (integral), and D (derivative) components of the controller. The proportional
term, encapsulated in a compound block named proportional term is implemented as:

| .4 — :Proportional Gain

The proportional gain is set to 0.4.

The integral term, encapsulated in a compound block named integral term is implemented as:

[0.50 — :Integral Gain }::' . »
5] 115

-1

P

The integration is performed using a limitedintegrator to prevent windup. The upper and lower limits are set to 0.6 and —
0.1 respectively, and the integral gain is set to 0.50.

The derivative term, encapsulated as a compound block named derivative term is implemented as:

I
Ll r@

>.] p{ EE BEGE tp
03333533 4
[0.02 ——»{ Dervative Gain One pole derivative

The computation of the derivative is implemented using a unitDelay block, two gain blocks, and two summingJunctions
blocks, as shown above. The sysClock clock input to the unitDelay is defined using a pulseTrain block, and the
contributions of the P, I, and D terms are summed up, as shown below.

2022.1 Embed 263

Using the Fixed Point Block Set

proportional term

derivative term

Because the motor needs a minimum of 1.13V to turn, a constant bias of 1.13V is added to the mix. To ensure that the
voltage applied to the motor is within the rated voltage range, and to shut the motor down when the simulation run is
complete, the limit and merge blocks are used, as shown below.

Error (scaled)

. »{TastPass] by
| () [T merge —
Lal
beror (ooatet) »GEREREER—) timiti o oo o

The output of the merge block is forced to zero after the last step of the simulation, represented by the system variable
$lastPass. For all other steps, the limit block restricts the output to the range 0V to 5V, as shown above.

Constructing the Volts to Degrees Converter

As is the case with many sensors, the potentiometer used in this application produces a voltage proportional to the actual
guantity being measured: in this case the angle of the paddle from the vertical. Since the set point is in degrees, you must
convert the volts corresponding to the actual angle to degrees of actual angle. The principle for modeling the conversion
process is quite simple. You measure the voltage at 0° and 90° angles. Assuming a linear relationship between
potentiometer volts and actual angle in degrees, the relationship can be written as:

actual angle = (actual voltage — Odeg voltage) * degrees_per_volt

where degrees_per_volt is obtained from the two calibrating measurements as:
degrees_per_volt = (90deg voltage — 0deg voltage) / 90

Combining the two relationships yields:

actual angle = (actual voltage — Odeg voltage) * (90deg voltage — Odeg voltage) / 90

This relationship can be implemented using standard arithmetic blocks.

264 2022.1 Embed

Using the Fixed Point Block Set

S0deg wvolts
iy Ea—»],
™

\ 2R 4
k:
y

Odeg wolts
_ ———:'* %E;:
}j 'rL + =
actual wolts limitc:
limit: 0 to 90 degrees

0 to 5 wolts

Two limit blocks are used to limit the actual volts to be within zero and five volts and the output to be within 0° and 90°.
This prevents the Volts to Degrees Converter subsystem from providing out-of-range values to the controller.

Constructing the fan-paddle-sensor

The key elements to capture in the fan-paddle model are the response profile and the lag between the input and output
signals. In other words, when the input changes by a certain amount, how long does it take for the output to show the
effects of the change in the input and how do the input and output amplitudes correlate. Based on this approach, subtract
the 1.13V that were added in the PID controller as the minimum bias voltage for the motor to run. The remainder is limited
to be in the range zero to two. The time delay and response profiles can be modeled easily by a first order transfer
function using the transferFunction block, as shown below.

Lotuator + Flant Model

+ 1
R h-|f e —
limit: 5+1
0 to 2

2022.1 Embed 265

Using the Fixed Point Block Set

Because the potentiometer converts angular motion into equivalent voltage and the calibrating voltage measurements for
0° and 90° are known, modeling the sensor is a simple arithmetic operation. The complete model for the fan-paddle-
sensor subsystem is shown below.

Aotuator + Plant Model

+ 1
b p_~ 2
limit: 5+
0 tco 2

90dey wvolts

Faddle Fosition
(wvoltsz)

e

Fensor HModel

Odeg wvolt=

This set of blocks is encapsulated in a compound block named Fan-Paddle-Sensor Model
(ACTUATOR+PLANT+SENSOR). In the dialog box for the System > System Properties command, set the range of the
simulation to be zero to 100 with a step size of 0.01. A slider block with range set to zero to 30 is used to specify the set-
point angle, and a plot block is used to display the results. Two const blocks are used to specify the 0° and 90° calibration
voltages of 1.17 and 0.68, respectively.

Fixed-point implementation of PID position controller
Constructing the Fixed-Point Volts to Degrees Converter

The floating-point implementation of the Volts to Degrees Converter was the arithmetic implementation of the equation:

actual angle = (actual voltage — Odeg voltage) * (90deg voltage — Odeg voltage) / 90

266 2022.1 Embed

The actual implementation is:

S0deg wolts

k 4

k J

Odeg wolts

actual wvolts .
limit:

0 to 5 wolts

e

Using the Fixed Point Block Set

YY

[+]

N

[
Lail

limit:
0 to 90 degrees

This relationship can be easily implemented using the fixed-point blocks sum, div, mul, limit, and const.

90deg wvolts

[(S0@ne.16 {7 .
g I s S0@fx8.16 o e = ”
ezl PLete] eneie] £ imiter
90@fx8.16

Odeg wvolts fosaE

1> [s limit:
+216 0 to 90 degrees

actual volts S i Bes)

—4= {>
0@fx4.16 ——>{ limiter
S@fx4.16 ——
limit:
0 to 5 volts
This set of blocks is encapsulated in the Volts to Degrees (FIXED POINT) compound block.
Constructing the controller
To implement the integral term, you use the fixed-point limitedIintegrator block, which expands to:
P b& 12
K
set initial
condition on
1/z block: 0.0
.

convert

input

—

R

1.16

Avi

AV

The integral term of the PID controller ¢

+1.16

I

o]
Set limits on
limit block:

-0.1 to 0.6

an be implemented as:

[0.5@fx1.16 > :Integral Gain
|

L

>
>

*

1.16

Fixed Point
limitedintegrator

—P

Fay

2022.1 Embed

267

Using the Fixed Point Block Set

Compared to the floating-point implementation, the only differences are the fixed-point const and mul blocks used to
define the integral gain and to perform multiplication, respectively. This set of blocks is encapsulated the Integral Term
compound block.

The Proportional Term compound block contains the fixed-point equivalent.

0 452 16 - Propotional Gain ——=* |
= [+ 4.1k

The arithmetic operations of the derivative term are replaced with fixed-point equivalents, const, mul, sum, and gain, as
shown below.

£

I~ *56. BEEEE

U= :Derivative Gain

B

*0.333333@07 16 14

One pole derivative

0.02Efx2.16

These blocks are encapsulated in the Derivative Term compound block.

Combining the three control terms, the fixed-point PID control can be implemented as:

i:?ﬁz;‘“ P sysClock
: g I SlastPass
_[>Setpomt 2 —
v » H[70.01@K1.16 integral term E=—F 0@k4.16
Error (scaled) proportional term [+ o
T Lo o) 0@ 16 H>| limiter
5@f@16 H T
TAS@aA5 limit: O to 5 —f[> Volts to
PID Controller Motor

Safety + Limits

“olts to Motor

Paddle Position
Degrees

éadde Position (degrees)

This set of blocks is encapsulated in the PID Control (FIXED POINT CONTROLLER) compound block. The complete
system becomes:

268 2022.1 Embed

Using the Fixed Point Block Set

PID Controller
(FIXED POINT)

0+ convert —1>[Setpoint PID Control
B convert —{Padde Posiion (degrees) C(glé-lﬁgoﬁ'_?gg Selteli ;

Input Yalts to Motar

Fan-Paddle-Sensor Model

Setpoint

Senzor Calibration - 90 deg [valts)

v

Paddie Position [valts]
begrees > e o] O R AR SO

1.17 @816 [
Sensor Calibration
0 deg (volts)

0.65¢&E. 16

densor Calibration
90 deg (wolts)

) Valts 1o Degrees 2= Calbration- 50 deg feok)
< Paddle Pasition 4) g Si Calibration - 0 deg [wals) [<—<H
<0 Paddle Pasition [degrees e rsor Calibration - 0 deg lucks

S {FIXED POINT) &

Paddle Position [vols)|<} corwert |4

ry

Convert Paddle Position
From Volts to Degrees
(FIXED POINT)

—

i Comparison of Desired and Actual Angles M= E3
o - 40[—Fosition
z —3Set Point
4= 530
z
=
20
3
o
> % 10
o
= i} 1
0 10 20 30 40 a0 60 70 a0 o0 100
> Time {sec)

Three convert blocks are used to ensure that the inputs to the Controller and the Volts to Degrees converter are the
correct data type. Furthermore, the 0° and 90° calibration voltages are defined using fixed-point const blocks. The
simulation parameters remain unchanged from the floating-point implementation.

It is important to note that in the simulation depicted above, the PID Control and Volts to Degrees Converter are
simulated by Embed in scaled fixed-point while the Fan-Paddle-Sensor is simulated in floating-point. This means that you
can simulate how a given control or logic prototype would execute on a fixed-point embedded system target, such as a
DSP or a microcontroller. This lets you answer in a single design and simulation iteration, crucial questions, such as:

e Isitfeasible?

e Willit work?

e Willit work on the embedded target that | have chosen or have in mind?
e Am | getting the most dynamic range for each of my variables?

e Can | guarantee that none of the variables will suffer numerical overflow for the entire range of inputs and
outputs that | am designing for?

e Does my control system exceed or at least meet the design specifications?
Embedded system prototyping methodology

Diagram: postion_control_embedded
Location: Examples > Fixed Point

Once the controller and control logic are simulated in scaled fixed-point, and the design issues are addressed
satisfactorily, the next step is the actual implementation of the controller and control logic on target hardware.

2022.1 Embed 269

Using the Fixed Point Block Set

With Embed, you can quickly and easily implement fixed-point controllers and logic on embedded targets. The embedded
code can be exercised and tested by changing set points using slider blocks and observing output in plots while the actual
control code is executed on the embedded target.

From a methodology point of view, the main concept that is crucial in embedded system prototyping is the principle of
adequate and complete encapsulation. That is, all control, logical, input-output (I/O,) and other subsystems that must run
on the embedded target, must, at a top level be contained in a single compound block.

In the fixed-point version of the fan-paddle position control system, the PID Controller (FIXED POINT CONTROLLER)
and Volts to Degrees (FIXED POINT) are the control and logic functions for this system. To ready this system for direct
implementation on an embedded target, it follows that all you need to do is collapse these two compound blocks into a
single compound block.

To prepare for encapsulation, begin by duplicating the 0° and 90° calibration value constant, so that Fan-Paddle-Sensor
and Volts to Degrees Converter each has its own set of constants.

PID Controller
(FIXED POINT)

[0 ——»{ convert —1{Setpaint FID Contral
———
———{*|Padde Position [degrees) C(SEESOTE:ENJ] Volsto Mator
Setpoint | ol M
Degrees B AT Fan-Paddle-Sensor Model
90 deg (volts)|[0.E3EHE. 16 = [{Sensor Calibration - 90 deg [valts) Paddle Pasition [volts]|
0 deg (volts) [1.17@HE.16 = [*{Sensor Calibration - 0 deg [volts] (ORI

Vil i Blengess Sensor Calibration - 30 deg wolis)[<—3—— 0 BBE=0.16 | 20 deg (volts)
——=<HPaddle Pasition [degrees) [F|XED POgINTJ Sensor Calibration - 0 deg fwols)[<—3F——— 1. 175,16 | 0 deg (volts)
Paddle Position fuals)|<} corrert 4 4

Convert Paddle Position
From Volts to Degrees
(FIXED POINT)

d - Comparison of Desired and Actual Angles [_ (O]
P ,L—n\le —-Faosition

2 —XSet Point
+ 530

z

=
20
+ 2

o
= % 10

o
B] | | | | I I I

] 10 20 30 40 50 B0 70 S0 a0 100

> Time (gec)

270 2022.1 Embed

Using the Fixed Point Block Set

Next, encapsulate PID Controller and Volts to Degrees in a single compound block named Embedded PID Controller.

Setpoint Paddle Position (degrees

=

=

:paddle pos degrees

0.65@x5. 16

90 deg (wolts)

PIDI Controller
(FIXED POINT)

{|Setpaint FID Contral

i Convert —{Padde Pastion [degress] C(CF)‘DXJERDOPLE‘ENI% Valtsto Matar

1. 17 @18, 16

0 deg (volts)

Conwvert Paddle Position
From Volts to Degrees

90 d 1
(FIXED POINT) eg (volts)

0 deg (volcs)

Sensor Calibration - 30 deg [valts)

Sensar Calibration - 0 deg [walts] V(D,ltlié%[];glr;.eng Paddle Position [degrees) cpaddle pos degrees
—1|Paddle Pasition [volts)

=

r Paddle Position (yolts) “Wolts to Mt r[

A new local variable called paddle_pos_degrees is created and wired to an additional output tab to bring this value out
and provide external access to it for monitoring purposes. The complete system representation is as follows:

I ™%
E} MR Comparison of Desired and Actual Angles _ (O] %]
[p 40| —Set Foint
Setpoint § —PFosition
Degrees + 530+

2

2ol

+ %
@

> % 10
o

B on \ . \ \ \ \ \ \

] 10 20 30 40 a0 =] 70 80 a0 100
» Time (sec)
<
Download-To-Target (DTT) Block
[Setpmint Paddle Position (degrees)
paddleposmon[uons] Sl el PIID Cinpiialleg Vohsta Motor—
Inpu Voks to Matce Fan-Paddle-Sensor Model
[RBEFaf:E 16 [Sensor Calibration - 30 deg lvolts) Paddle Pasition [ualts)
1.17 @816 = Sensor Calibration - 0 deq (volts) (AETUATIRFLART SISl

4
&

In this form, Embedded PID Controller can generate, compile, link, and download embeddable C code to supported
targets and perform hardware-in-the-loop system prototyping and validation.

When performing hardware-in-the-loop validation, the use of analog and digital inputs and outputs is quite common.
Embed provides analog and digital I/Os that can be configured just as any other Signal Producer or Consumer block and
placed inside the Embedded PID Controller block. Embed supports automatic programming of on-board analog and digital
I/0, as well as all the important peripherals. The parameters entered in the configuration of the I/O points and peripherals,
such as channel number, and range, are extracted and placed in the embedded control code for the Embedded PID
Controller block and automatically downloaded to the target.

2022.1 Embed 271

Generating DLLs

DLLs are useful for:

e Speeding up simulation time: When a diagram contains DLLs, it requires less disk space and memory since its
executable program files contain the names of the DLL functions but not the code for the functions. For
particularly large diagrams, the use of Embed-callable DLLs can significantly increase the speed of your
simulations.

e Performing multi-rate execution: When a compound block is converted into a DLL, the DLL retains the step
size and integration method in use at the time of DLL generation. If the diagram that calls the DLL has a faster or
slower step rate, the DLL skips or adds steps to maintain its own clock rate. This allows you to have a low
frequency overall diagram with high frequency components compiled as DLLs.

e Protecting intellectual property: Because DLLs cannot be reverse-engineered into readable source code, you
can be sure that no one can access your intellectual property.

e Interface with other applications or simulators

Creating a DLL

Only compound blocks can be converted into DLLs. When a compound block is converted into a DLL, the DLL retains the
step size and the integration method in use at the time of DLL generation, and not those selected or specified by the
diagram calling the DLL. The DLL does, however, use the simulation start and end times of the diagram that calls it.

The generated DLL includes the block and connector names. When the resulting DLL has numerous input and output
connectors, the connector names make it easy to identify the correct wiring paths

To create a DLL
1. Open the diagram that contains the blocks you want to convert into a DLL.
2. Collapse the blocks into a compound block, if you have not already done.

3. Select the compound block.

2022.1 Embed 273

Generating DLLs

4. Choose Tools > Code Gen.

Code Generation Properties

ResultFile: | aci33sim.c

Result Dir; C:\altair\Embed 20200

Target: Host V

Subtarget (set in target config):

Optimization Level: [] check for Performance Issues

[+]=e selected compound edae pins for data exchange (enables embedded debug):

[|Embed Maps in Code [] add Stack Ched: Code

[] call from Foreign RTOS/User App On-Chip BRAM Cnly

] indude Blodk Nesting as Comment Target FLASH

[]Enable Preemption in Main Diagram

Stack size: IZI Heap size: IZI

Perindic Function Mame; cgMain

Code Gen View, . Compile... Download. ..
The Result File box displays diagram-name.C, where diagram-name is the name of the current diagram. By default,
Embed uses the diagram name as the name for the DLL. For example, if you enter ACI33SIM.C, Embed creates a
DLL called ACI33SIM.DLL.

5. If you are creating more than one DLL from a single diagram, give each DLL a unique name.

6. The Result Dir box indicates where the DLL will be stored. To change the location, click

7. The Target box contains the target platform for code generation. Choose Host, if it is not already selected.

8. Activate Use selected compound edge pins for data exchange. This parameter allows the generated code to
include calls to send data to and receive data from Embed. This parameter is dimmed when no compound block is
selected.

9. Choose from the following parameters:

Activate this parameter |To

Add Stack Check Code Do not activate.

Call from Foreign RTOS/User Do not activate.

App

Check for Performance Issues Do not activate.

Embed Maps in Code Insert map file contents directly into
the generated code. When this
parameter is activated, the resulting
executable will be portable because
the map file is no longer needed.

Heap Size Does not apply.

274 2022.1 Embed

10.
11.

12.

Include Block Nesting as
Comment

Include comments in the generated
code that indicate the compound
blocks that correspond to the code.

On-Chip RAM Only

Does not apply.

Optimization Level

Specifies compiler optimization level,
from 0 (no optimization) to 4 (highest
level). In rare circumstances, Level 4
may yield inconsistent results,
necessitating a lower level of
optimization.

Periodic Function Name

Does not apply.

Stack Size

Does not apply.

Target FLASH

Does not apply.

Use selected compound edge
pins for data exchange

Creates the DLL.

Click Compile.

Generating DLLs

Embed opens a text window in which it displays DLL creation. When the DLL has been generated, press any key to
return to the Code Generation Properties dialog box.

Click Done.

Calling a DLL from an Embed diagram

The process of calling a DLL from an Embed diagram involves binding the DLL to a userFunction block and then wiring
the userFunction block into the diagram. During simulation, each time the userFunction block is executed, Embed calls
the DLL.

After you bind a DLL to a userFunction block, Embed renames the userFunction block with the DLL name. For example, if

you created a DLL named AC Motor, Embed renames the userFunction block to AC Motor.

If you elected to retain connector labels when you created the DLL, you can display the labels on the userFunction block
using the View > Connector Labels command. Connector labels make it easy to correctly wire a userFunction block into a
diagram.

To bind a DLL to a userFunction block

1.
2.

4.

From the Blocks > Extensions menu, drag a userFunction block into your diagram.

Choose Edit > Block Properties.

Click the userFunction block.

The DLL Properties dialog box appears.

DLL Properties

0JEN | serFunction

| Select...

Base Function: |

QK Cancel

Help

Do the following:

2022.1 Embed

275

Generating DLLs

e Inthe DLL File box, enter the complete file specification of the DLL. This name corresponds with name specified
in the Result File box in the Code Generation Properties dialog box. If you are not sure where the DLL file

resides, click Select to locate it.

e In the Base Function box, enter cgMain.

5. Click OK.

To view connector labels on a DLL

e Choose View > Connector Labels.

Verifying DLL results

Before editing the diagram to replace the existing blocks with a corresponding DLL, it is a good idea to verify that the DLL

operates correctly.

For example, in following diagram, a DLL is created from the AC Motor (dgq) compound block. To verify that the DLL
operates correctly, the inputs to the compound block are fed into the DLL. A second plot block, with the same properties
as the original plot is placed in the diagram. If both plots register the same results when you simulate the diagram, then

the DLL is correct.

2587

- 3 PHASE

DQ MOTOR MODEL

6000

an

YVYY

on

Wbn AC Motor(da)

Speed

—SFEED, RFM
4,_, 3500 —TQRAUE, NM
Torque 1000
I
-1500
-4000

|
R a 5

Wan
wbn "Ac Motor{do)"

{22

on

Speed

Tarque|

1
1 1.5 2
Time (sec)

—w{ts Zrpr | Fpng
—SPEED, RPM
3500 — TORAUE, MM
1000 "
1500
1 1
5 1

» —4DDDD

Time (sec)

1.5

Comparing simulation speed

You can easily compare how much faster a simulation runs with a DLL than using Notify At Simulation End. It displays
how long it takes to run a simulation in simulated time and real time.

To compare performance

1. Choose Simulate > Simulation Properties; then click the Preferences tab.

1. Activate Notify At Simulation End and click OK.

2. Disconnect the DLL from the diagram.

276

2022.1 Embed

Generating DLLs

Run the simulation.
Reconnect the DLL to the diagram and disconnect the corresponding compound block from the diagram.

Run the simulation.

o a ~ w

Compare the real-time simulation results from the two simulation runs.

Building a custom DLL
If you want to add a custom dialog box to a DLL, you must compile and link the code manually.

Nowadays, most languages have a Project Build facility that automates the process of building an executable or DLL. We
recommend using Microsoft Visual Studio (v6 or higher). Refer to the documentation for the application language you are
using for specific instructions.

To build a custom DLL with Microsoft Visual Studio v2012
1. Invoke Microsoft Visual Studio.
2. Choose File > New to create a new project workspace.

3. Inthe left windowpane, select Visual C++. In the right windowpane, select Win32 Project. Then enter the project
name and location in the text boxes at the bottom of the window. We recommend activating the Create directory
for solution parameter. When you do so, the Solution Name defaults to the project name.

P Recent MET Framework 4.5 * Sortby: Default -| & Search Installed Templates (Ctrl+E) P
4 [Installed 44 Tvpe: Vieual C
h Win32 Console Application Visual C++ ype: Visual La+
4 Temnplates A project for creating a Win32 application,
4 Visual C++ n MFC Application Visual Co+ console application, DLL, or static library
ATL =
ey
CLR Win32 Project Visual G+
General
4
MFC B Empty Project Visual C++
Test
. 4
Win32 0O Makefile Project Visual C++
LightSwitch
> Other Languages
I Other Project Types
Samples
b Online
Name: SlidingModeController
Location: ch\Embed DLL Projects | -
Solution name: SlidingModeController Create directory for solution
[[] Add te source control
4. Press OK.

The Win32 Application Wizard starts.

2022.1 Embed 277

“
Win32 Application Wizard - SlidingModeCantrol [

D Welcome to the Win32 Application Wizard

T These are the current project settings:

» \Windows application

Application Settings

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the
project features and files that are generated.

Next> |[Finsh][cancel

5. Press Next.

The Application Setting window appears.

Win32 Application Wizard - SlidingModeControl

El | Application Settings

Overview Application type: Add common header files for:
() Windows application
() Console application
®ou

() static library

Application Settings

Additional options:
Empty project

[/] Secur

6. Do the following:
e Under Application Types, select DLL.
e Under Additional Options, select Empty Project.
e Click Finish.

7. The Solution Explorer window appears.

Generating DLLs

278

2022.1 Embed

Generating DLLs

m SlidingMadeContraller - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
[in | g P Local Windows Debugger ~ Auto - Debug -~ Win32 - .

Solution Explorer > 1 x
@ o--@m &g
Search Solution Explorer (Ctrl+;) P~

R Solution 'SlidingModeController' {1 project)
4 [%] SlidingModeController

&3 External Dependencies

= Header Files

=5 Resource Files

E'ﬂ Source Files

8. Before proceeding, open Windows Explorer and copy the custom C or Embed-generated C file to your newly
created project location.

9. Go back to the Solution Explorer window.

10. Right-click Source Files. Then click Add > Existing Item.

0 siidingModeController - Microsoft Visual Studio (Administrator)
HLE EDIT MEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
I | e P Local Windows Debugger - Auto - Debug - Win32 - A

Solution Explorer > X
@ o--da &

Search Solution Explorer (Ctrl+;) P~

&7 Solution 'SlidingModeCentroller' (1 project)

4 [%] SlidingModeController
&2 External Dependencies
Bl Header Files
Bl Resource Files

7] Sourgatils

Add 'O Newltem... Ctrl+ Shift+ A

gF Class Wizard... CirleShift+X 4 Euisting Item... Shifts Alt+ A
Scope to This ‘M New Filter

New Solution Explorer View e Class..,

3{3 Cut Ctrl+X * Resource...

o Copy Ctrl+C

2 Delete Del

L Rename F2

K Properties

11. Select your custom C or Embed-generated C file and press Add.

12. Right-click the Project Name and select Add > Existing Item.

2022.1 Embed 279

13.

14.
15.

16.

Generating DLLs

m SlidingModeController - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUID DEBUG TEAM 5QL TOOLS TEST ANALYZE WINDOW HELP
" - @ e P Local Windows Debugger - Auto - Debug - Win32 -

Solution Explorer iz

@ o-- a8 &R

Search Solution Explorer (Ctrl+;) P~
137 Solution ‘SlidingModeContraller (1 project)
4[] SlidingModegay
b B3 External [kl Build
B Header F Rebuild
g Resource Clean
4 Source Fi
P t Onl 3
b *+ Diagri MR

Scope to This

MNew Solution Explorer View
Profile Guided Optimization 3
Calculate Code Metrics

Build Customizations...

Add ' 'O Newltem... Ctrl+Shift+ A
References... 0 Existing tem... Shift+ Alt+A
BF Class Wizard... Ctrl+Shift+X @ New Filter
B Manage MuGet Packages... e Class..
#3 View Class Diagram % Resource..
£} Setas StartUp Project
Debug &
H Add Solution to Source Control...
M cut Cirl+X
X Remove Del
%3 Rename F2

Unload Project

Rescan Solution

¢ Open Folder in File Explorer

& Properties

Insert the following:
¢ \<install-directory>\CG\LIB\CGDLL32.LIB
¢ \<install-directory>\VSDK\LIB\VISSIM32.LIB

Note: To specify file names, enter the full pathname, including drive
specification for CGDLL32.lib and VISSIM32.lib.

Choose Build > Properties to establish the settings for the build.
In the Properties Pages dialog box, do the following:
e Click Configuration Properties > C/C++ > General.

e Select Additional Include Directories; then in the corresponding cell, enter \<install-directory>\VSDK\INCLUDE;
\<install-directory>\CG\INCLUDE

Note: To specify directory names, enter the full pathname, including the
drive specification for the INCLUDE directories.

e Click OK.

Choose Build > Build Solution to build the project.

Generating code from automatically-generated DLLs

280

2022.1 Embed

Generating DLLs

You can include pre-existing, user-written or automatically-generated DLLs in the portion of the diagram from which you
are generating code. To do so, you must declare the DLL functions in USERDLL.H and include the library for the DLL in
VSMDLL32.BAT.

For example, to generate a DLL from a compound block in which the DLL named READ_INPUT_FILE is embedded, do
the following:

e In USERDLL.H, add:

__declspec(dllexport) void _stdcall EXPORT READ_INPUT_FILE
(double p[],double in [],double out[]);

This line declares the exported DLL function READ_INPUT_FILE so
that automatic DLL code generation will make the proper external
reference to it.

e In VSMDLL32.BAT, add:
set userlibs=READ_INPUT_FILE.LIB

This line associates the shell variable userlibs with the library file for the
exported DLL function.

e To associate multiple libraries with userlibs, separate each library file with an empty space. For example:
set userlibs=READ_INPUT_FILE.LIB READ_OUTPUT_FILE.LIB

Note: If the user-written file is a CPP file, you must prefix the exported
functions in the CPP file with extern “C”. For example:

extern “C”__declspec(dllexport) void _stdcall EXPORT
READ_INPUT_FILE (double p[],double in [],double out[]);

This line causes the external name generated by the CPP file to be
compatible Embed DLL naming conventions.

Troubleshooting

Out of Environment Space error message

The most common problem is an Out of Environment Space error message in the MS-DOS window. To rectify this
problem, select the Memory tab in the MS-DOS Prompt Properties, and increase the Initial Environment setting to a larger
value. Then try again.

LINK warning about LIBC.LIB

If you receive a Link warning message during the build, you should instruct the Project Build facility to ignore LIBC.LIB,
which you can do with Microsoft Visual Studio (v6 or higher). The following example steps you through removing LIBC.LIB
using Microsoft Visual Studio v2012:

1. Choose Project > <project-name> Properties.

2. Under the Property Pages dialog box, in the left windowpane, choose Linker to expand the folder.

2022.1 Embed 281

PowerPack Property Pages

Configuration: IActi\.re[ReIease]

2]

j Flatform: IActi\re(Winaz)

j Configuration Manager...

4 Configuration Properties
General
Debugging
VC++ Directories
I C/C++
I Manifest Tool
I Resources
I XML Document Generatc
I Browse Information
I Build Events
I Custom Build Step
I Code Analysis

Additional Dependencies

Ignore All Default Libraries
Ignore Specific Default Libraries
Maodule Definition File

Add Module to Assembly
Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assembly Link Resource

Additional Dependencies

Specifies additional items to add to the link command line [i.e. kernel32.lib]

Generating DLLs

K {0
oK I Cancel Apply
3. Under Linker, choose Input.
20
Configuration: IActive(Re\ease] j Platform: IActiue(Wm32] j Configuration Manager...
4 Configuration Properties Additional Dependencies
General Ignore All Default Libraries
Debugging Ignore Specific Default Libraries libc.lib j
VC++ Directories Module Definition File
4 CtjC++ Add Module to Assembly
4 Linker Embed Managed Resource File
General Force Symbol References
L Delay Loaded Dlls
CEMERRlE Assembly Link Resource
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
I Manifest Tool
I Resources
I XML Document Generatc
I Browse Information
b Build Events
I Custom Build Step
b Code Analysis Ignore Specific Default Libraries
Specifies one or more names of default libraries to ignore; separate multiple libraries with semi-colons.
4 Ll {/NODEFAULTLIB:[name, name, ...])
oK I Cancel | Apply |
4. Inthe right windowpane, choose Ignore Specific Default Libraries, and in the corresponding cell to the right, enter
LIBC.LIB.
5. Click OK.
6. Choose Build > Rebuild Solution to build the entire project or Build > Build Solution to build only the files that
have been modified since the last successful compile and link.
282 2022.1 Embed

Generating DLLs

LINK warning messages that can be ignored

You may see additional link errors, such as:

e LINK: warning LNK4099 : PDB vc40.pdb was not found with \deb\FILEIO.OBJCgdII32.LIB or at
c:\src\cg\deb\vc40.PDB

e Linking object not found

These are compiler warnings that there is not sufficient information to create a debug database for the project.

2022.1 Embed 283

Generating Simulation Objects

Generated code for a simulation object is created in such a way as to allow you to create multiple instances of the
generated simulation object. This means that you can create multiple simulation object instances and run them in parallel.
This also means that data structures must be dynamically allocated, as opposed to code generated for embedded targets,
which uses statically allocated data structures.

Creating a Simulation Object

Only compound blocks can be converted into simulation objects. When a compound block is converted into a simulation
object, it retains the step size and the integration method in use at the time it was generated, and not those selected or
specified by the diagram in which the simulation object will be embedded. The simulation object does, however, use the
simulation start and end times of the diagram that calls it.

To create a simulation object
1. Open the diagram that contains the blocks you want to convert into a simulation object.
2. Collapse the blocks into a compound block, if you have not already done so.

3. Select the compound block.

2022.1 Embed 285

Generating Simulation Objects

4. Choose Tools > Code Gen.
Code Generation Properties
ResultFile: |PID.c
Result Dir; C:\altair\Embed 20200
Target: Simulation Object o
Subtarget (set in target config):
Optimization Level: [] check for Performance Issues
|se selected compound edge pins for data exchange (enables embedded debug)
[|Embed Maps in Code [] add Stack Ched: Code
[] call from Foreign RTOS/User App On-Chip BRAM Cnly
] indude Blodk Nesting as Comment Target FLASH
[]Enable Preemption in Main Diagram
Stack size: IZI Heap size: IZI
Perindic Function Mame; | FID
Code Gen View, . Compile... Download. ..
The Result File box displays compound-block-name.C, where compound-block-name is the name of selected
compound block in the current diagram.
If you are creating more than one simulation object from a single Embed diagram, give each simulation object a
unique name.
5. The Result Dir box indicates where the simulation object will be stored. To change the location, click
6. The Target box contains the target platform for code generation. Choose Simulation Object, if it is not already
selected.
7. Activate Use selected compound edge pins for data exchange; then choose from the following parameters:
Activate this parameter |[To
Add Stack Check Code Do not activate.
Call from Foreign RTOS/User Do not activate.
App
Check for Performance Issues Do not activate.
Embed Maps in Code Insert map file contents directly into
the generated code. When this
parameter is activated, the resulting
executable will be portable because
the map file is no longer needed.
Heap Size Does not apply.
Include Block Nesting as Include comments in the generated
Comment code that indicate the compound
blocks that correspond to the code.
286 2022.1 Embed

Generating Simulation Objects

On-Chip RAM Only Does not apply.

Optimization Level Specifies compiler optimization level,
from 0 (no optimization) to 4 (highest
level). In rare circumstances, Level 4
may yield inconsistent results,
necessitating a lower level of

optimization.

Periodic Function Name Specifies the name of the simulation
object.

Stack Size Does not apply.

Target FLASH Does not apply.

Use selected compound edge lActivate this parameter.
pins for data exchange

8. Click Compile.

9. Embed opens a text window in which it displays simulation object creation. When the simulation object has been
generated, press any key to return to the Code Generation Properties dialog box.

10. Click Done.

Communicating with an embedded simulation object

Embed provides a support library that contains API functions to support code generation. These include, among other
things, numerical integration, transfer function filter, time delay, and pulse train. The support library resides in the <install-
directory>\CG\LIBRARY directory.

Embed also includes a sample file that invokes the API and shows how calls are used. This file, named SIMOBJ.C,
resides in \CG\LIBRARY.

To communicate with your simulation object
1. Open your custom application file.
2. Create a handle to your simulation object using the createSim function.

3. Make calls to the vsmCgRuntime command.

Using the createSim function

The createSim function returns a handle to the simulation. With the handle, you can invoke vsmCgRuntime to run the
simulation. Every time you call createSim, you get a unique handle to a new simulation object. This means that you can
have multiple simulation objects embedded in your custom application.

variable = sim-name createSim();
The sim-name is the function name you provided when you generated the code.
The declaration for the createSim function is:

SIM_STATE *variable

Using the vsmCgRuntimeCommand

This function runs the simulation using the specified input signals.

2022.1 Embed 287

Generating Simulation Objects

int vsmCgRuntimeCommand(
IN SIM_STATE * hSim,
IN int cmd,
IN double inSig[],
OUT double outSig(]
INOUT double * targetTime);

Command values

RTE_RUN_TO_TIME Runs the Embedmodel until *targetTime is reached. InSig contains a vector of double precision
inputs to the simulation. Note that the order of the inputs is the top-down order of the original compound block connectors.
On return, outSig contains the calculated output values.

Return values for RTE_RUN_TO_TIME

VSM_SIM_MATH_ERR Indicates that a math error has occurred.

VSM_SIM_END_TIME_EXCEEDED Indicates that *targetTime is past the current Embed end time.
VSM_SIM_USER_STOP Indicates that a user has pressed the stop button or that the stop block has been actuated.
VSM_ERR_FILE_ACCESS A map or import file could not be opened.

RTE_SET_EXIT_CONDITION Takes the string in inSig and sets it as a C expression to be evaluated at each time step
for early simulation termination.

RTE_SET_TIME Moves Embed time forward to *targetTime. Note that blocks do not calculate during this call.
RTE_GET_TASK_TIME Fills *targetTime with the current Embed time.
RTE_GET_TIME_STEP Returns the current Embed time step.

RTE_GET_NEXT_TIME Returns the next time at which Embed calculates new values.

Using the vsmCgGetLastErrorString()

This function returns a text description of the most recent error. If there has not been an error, a NULL pointer is returned.

const char* vsmCgGetLastErrorString(IN SIM_STATE * hSim)

Sample file with simulation object interface

The following C file shows the interface to Embed simulation object code generation. This is a generic wrapper for a single
instantiation of a simulation object. You will replace this file with your own user interface that can instantiate any number
of simulation objects.

#include <math.h>
#include <memory.h>
#include <stdlib.h>
#include "vsuser.h"
#include "cgen.h"

/I Sample file to show how to create and interface to a simulation object

288 2022.1 Embed

Generating Simulation Objects

#include "vsmApp.h" // This file contains the vsmCgRuntimeEvent() commands
#include "cmdApi.h"

#define MAX_VSM_ARG 64

#define TIME_END 1

int main(int argc, char **argv)

{
SIM_STATE *hSim; // Declare a handle to the sim
double inSig]MAX_VSM_ARG], outSig[MAX_VSM_ARG], simTime,T, timeStep=.05;
int a, retval;

double endTime=TIME_END*1.000000001;

hSim = cgMainCreateSim(); // Create sim, return handle (Instantiate a simObject)

vsmCgRuntimeCommand(hSim,RTE_GET_TIME_STEP,&timeStep,0,0); // Get sim timestep (optional)
vsmCgRuntimeCommand(hSim,RTE_RESET,0,0,0); /I Reset the sim (required before each run)
for (T=0; T <= endTime; T+=timeStep)
{
inSig[0] = 5; // To do: supply your arguments here
inSig[1] = 5; // We supply some arg values here
inSig[2] = 0;
retVal = vsmCgRuntimeCommand(hSim,RTE_RUN_TO_TIME,inSig,outSig,&T);
if (retval I= VSM_SUCCESSFUL)
{
printf("vsmCgRuntimeCommand() returns '%s'": ", vsmCgGetLastErrorString(hSim));
break; // Problem in sim, stop simulating
}
printf("T=%Qg:ST=%g: %g,%g\n",T,simTime, outSig[0],outSig[1]); // To do: make use of Embed results
}

return O;

}

2022.1 Embed 289

C Support Libraries

In addition to the program and utility files necessary to generate C, OBJ, EXE, and DLL files, Embed provides two C

support libraries:

During installation, Embed places the C support libraries in the <install-directory>\CG and <install-directory>\CG\LIB,

CG32.LIB for the Windows platform

SIMOBJ.LIB for simulation object generation

respectively.

Object files

Both C support libraries (CG32.LIB and SIMOBJ.LIB) contain a collection of object files that contain compiled instructions

to support blocks for which there is no direct translation into C source code. These blocks include:

atan2

buffer
crossDetect
dotProduct
embed

error

export

import
integrator
invert
limitedIntegrator
map

multiply
pulseTrain
resetintegrator

stateSpace

2022.1 Embed

201

C Support Libraries

e stop

e timeDelay

e transferFunction
e transpose

e unitDelay

. vsum

SIMOBJ.LIB also contains API instructions to support code generation.

Targeting C code for unsupported platforms

The source code for the C support library (CG32.LIB) is required for the following reasons:

e To enhance the functionality of the C support library.

e To generate executable files to be run on processors other than the ones supported by the object code version of
the C support library shipped with Embed. For example, to embed the source code library in a Hitachi chip, you
need to recompile and relink the support library using a Hitachi compiler.

The source code for the CG32.LIB support library is a separate product that is not automatically included when you

purchase Embed.

C support library source code

The source code for the C support library comprises the following files:

File name Description
CG.C Main driver routines
CG.H Function prototypes
CGEN.H Structure definitions
CGlo.C File IO
CGIO.H Function prototypes
CROSSDET.C Cross detection
CROSSDET.H Function prototypes
FILEIO.C File parsing
FILEIO.H Function prototypes
IMPORT.C File import/export
IMPORT.H Function prototypes
MAT.C Matrix operations
MAT.H Function prototypes
MATDIV.C Matrix divide
MATDIV.H Function prototypes
READCC. TXT ASCII text file containing additional technical information and
corrections to the manual
292 2022.1 Embed

SIMIO.H Function prototypes

VCSRC.MAK C code source makefile for Microsoft Visual Studio
XFER.C Transfer function support

XFER.H Function prototypes

UNIX.MAK Make file for Unix platforms

VCSRC.MAK Project for Microsoft Visual C

Compiling and linking the C support library source code

C Support Libraries

To compile and link the support library source code, you can use the makefile named SRC.MAK that was shipped with
Embed. This makefile resides in the <install-directory>\CG.

Platform The makefile is configured to use
Windows Microsoft Visual Studio
UNIX Gnu and native ANSI C compilers

To compile and link the support library source code

e Enter one of the following commands at the system prompt:

To use this makefile

Use

Microsoft C

Open the project VCSRC.MAK

Gnu C or native ANSI C

make -f unixsrc.mak

2022.1 Embed

293

Extending the Arduino Block Set

Arduino libraries are a convenient way to add functionality to your Arduino embedded diagrams. There are hundreds of
libraries that support common types of hardware, such as servo motors and LCD displays, as well as basic
communication functions.

Embed includes several dozen diagrams that use Arduino libraries. Embed also provides an easy way to download
libraries from the Arduino website.

You can also copy and paste Arduino sketch code directly into Extern Definition and Extern Function blocks.

Sample diagrams that use Arduino libraries

The sample diagrams that use Arduino libraries are located under Examples > Embedded > Arduino > External Library
Import. The diagrams have been pre-configured using Extern Definition and Extern Function, allowing you to easily
download the modules and compile. The sample diagrams are listed in the table below.

Sample diagram using a library

Description

AdafruitOLED-Uno

Prints Hello, world! on an SSD1306 display

DHT11_sensor_library-Leonardo
DHT11_sensor_library-Uno

Reads temperature and humidity data from a DHT11 sensor at
0.5Hz rate and prints them to serial output

EsploraAccelerometer-Mega

Reads accelerometer data from Esplora using Extern blocks and
prints the data to serial output

LCDminiClick-Mega
LCDminiClick-Uno

Communicates with the Arduino board over the SPI interface

LiquidCrystal-Uno

Controls the liquid crystal displays

MPU6050-Uno

Reads temperature, acceleration, and gyro data and angles from
the MPU 6050 sensor and prints the data to serial output

Servo-Mega

Controls a motor by writing a position value to the servo

Ultrasonic-Mega
UltrasonicBlink-Mega

Reads the distance of an object from the sensor and prints to
serial output; the Blink diagram blinks a green or red LED if an
object is greater than 10cm away

Importing libraries with the Arduino Library Manager

There are hundreds of libraries that you can import from the Arduino website using the Arduino Library Manager. You can
also import libraries from other websites; however, these libraries may not conform to proper coding standards and
therefore may not be easy to incorporate into your diagrams.

2022.1 Embed 295

Extending the Arduino Block Set

To use the Library Manager to install Arduino libraries
8. Goto C:\Program Files (x86)\Arduino\libraries and double-click Arduino.exe to start the Arduino IDE.
9. Click on Sketch > Include Library > Manage Libraries.
10. Inthe Library Manager Search box, enter the full or partial name of the library you are searching for.
Libraries that match the name are displayed in the lower window.
11. Select the library.
12. Click on Install. For some libraries, you will need to select the version before you can install it.

By default, the library is downloaded to C:\Users\<user-name>\My
Documents\Arduino\libraries.

The library can now be set up and used in a diagram.

Setting up libraries imported with the Arduino License Manager

When importing Arduino libraries, there are several housekeeping tasks you should perform for the the code to run
efficiently.

Using the Extern Definition and Extern Function blocks

After you import libraries, you use the Extern Definition block to set up the #include, #define, and instantiation declarations
from the Arduino example sketch and the Extern Function block to integrate a setup loop in the diagram. See the example
below.

Delay functions

Many Arduino libraries contain Setup() and Loop() functions that contain one or more Delay functions. If the sum of length
of the Delay functions is greater than the time step set in Embed (under Systems > Simulation Properties), Embed does
not have time to execute one iteration of the library function. The most common way to deal with Delay functions is to
encapsulate the library in a compound block and set it to execute as a Background Task with a local time step greater
than the sum of all delays in the library.

Alternatively, you can add up the length of all delays in the library and set the Embed time step to a greater value.

Example: Importing an Arduino library that displays text on an
SSD1306

This example describes how to use the Adafruit SSD1306 driver along with the Adafruit GFX general-purpose graphics
software to print “Hello, world!” on the SSD1306 on an Arduino Uno coupled with a 128x32-bit display connected via 12C.
You can easily modify the steps for a 64-bit display or SPI connection.

1. Attach the SSD1306 OLED to the Arduino Uno board as shown below. For
wiring instructions, go to https://learn.adafruit.com/monochrome-oled-
breakouts/wiring-128x32-spi-oled-display.

296 2022.1 Embed

https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display

Extending the Arduino Block Set

2. Start the Arduino IDE.
3. Click Sketch > Include Library > Manage Libraries and do the following:
a. Inthe Search box, enter ssd1306.

’ Library Manager

Type (Al . Topic |al v | |ssd1306 L
ACROBOTIC SSD1306 by ACROBOTIC f
Library for SSD13206-powered OLED 128x64 displays! This is a library for displayil

128x64 displays; includes support for the ESP8266 SoC!
More info

S |

Adafruit SSD1206 by Adafruit Version 1.1.2
SSD1306 oled driver library for 'monochrome’ 128x64 and 128x32 OLEDs! SSDIB&
and 128x32 OLEDs!

[1nstal | /

P6 Wemos Mini OLED &y Adafruit + mcauser
iver library for Wemos D1 Mini OLED shield This is based on the(
ke display by mcauser. {

2

More info

ESP8266 and ESP32 Oled Driver for SSD1306 display by Daniel Eichhorn, Fabri(
A I2C display driver for SSD1306 oled displ: d to an or ESPJ
connected to an ESP8266 or ESP32

b. Under Adafruit SSD1306, select the most recent version and click
Install.

c. Repeat steps a - b but this time search for and install the most recent
version of Adafruit GFX library.

2022.1 Embed

297

Extending the Arduino Block Set

(A Library Manager

Type AI + | Topic ‘All v lafx

Adafruit GFX Library by Adafruit Version 1.2.9 :
Adafruit GFX graphics core library, this is the ‘core’ class that all our other gr.
addition to the display library for your hardvare.
More info

Install

jkrix by Adafruit
pmpatible library for NeoPixel grids Adafruit_GFX-compatible |

Version 1.2.8
Version 1.2.7

Version 1.2.6
Version 1.2.5
|_|Version 1.2.4
Version 1.2.3 stems Pty Ltd
Version 1.2.2 ~ | for the gen4-IoD by 4D Systems This is a library which enab
modules using the Arduino IDE or Workshop4 IDE. gen4-IoD is powered by the o
More info

GFX4DIoD9 by 4D Systems Pty Ltd
Graphics Library for the IoD-09TH and IoD-09SM by 4D Systems This is a libragy
the IoD-09 modules using the Arduinc IDE or Workshop4 IDE. 1oD-09 is pow
More info

4. Click on File > Open > Examples > ssd1306_128x32_i2c and select
ssd1306_128x32_i2c.ino.

5. To verify that the library modules have been installed correctly, compile the
code from the Arduino IDE by clicking on the checkmark in the upper left
corner of the Arduino window.

6. To verify that the hardware is connected properly and works as expected,
click the right arrow in the upper left corner of the Arduino window to upload
and run the code on your Arduino.

7. Start Embed and position it next to the Arduino window.

IDFEE| 28 55(2Y bl sd BorunvEmumwedd afleo NEEOB
| > % (= N UT | % /+HED % " om it | vsvzod ong LhIBYS [wadee ool B vor - ane T

[variable @ &

@ Blocks
& Embedded
- Arduino =
Arduino Config...

$51306_128:32_12¢

de <Adafruit_SSD1306.h>

define OLED_RESET 4
Rdafruit_SSD1306 Alsplsy(OLED_RESET):
Extem Definition
Extem Function

Extem Read
Extern Write
w-RC
- PWM
- Seriel Uart
- Sim
-SPL
@ Target Interface
About Embedded Target Support...
- C2407
@ CortecM3
& Delfino
& F280x
- F2B1X
- Generic MCU
5 MSP430
i Piccolo
& TI16-bit Digital Motor Control Blocks
- TI32-bit Digital Motor Control Blocks
@ TIMotorWare
& OpenVision
& Comm
& Wireless
i Bamples
5 Toolbox
& Digital Power
® State Charts

OGMEM 10gol6_glcd_bup(] =

B00000001,
800000001,
800000011,
B11110011,
11110,

B01111110, Bi1!
500110011,
B00011111,
B00001101,
B00011011,
B00111111,

B01110000, B01110000,
B00000000, BO0110000 };

#1% (SSD1306_LCDHEIGHT = 32)

Bls 0 Rng 0:10 Step 05 T0 R

8. Create a new diagram and save it as OLED2.vsm.

298 2022.1 Embed

10.
11.
12.

13.

14.

Extending the Arduino Block Set

Insert the following blocks into your diagram:

e Embedded > Arduino > Arduino Config block. Make sure it is
configured for an Uno and the Comm port is set correctly.

e Embedded > Arduino > Extern > Extern Definition block in your
diagram.

Right-click the Extern Definition block to access its Properties dialog box.
Click Select Library Modules.

In the External Library Selection dialog box, select Adafruit_SSD1306
and Adafruit_GFX_Library, then click OK.

The Extern Definition dialog box displays the selected libraries under
Library Modules.

Library Modules:;
Adafruit_GFX_Libranddafruit SS0D1306

L Select Library Modules]

o

With the Arduino window and Embed window side-by-side, copy the
#include, #define, and instantiation declarations from the Arduino sketch into
the External Definition window.

ssd1306_128x32_i2¢

Flude <Adafruit GEX.h>
#include <Adafruit SSD1306.h>

#define OLED_RESET 4
:_SSD1306 display(OLED

10GO16_GLCD_HEIGHT 16
0G016_GLCD_WIDTH 16

{ B00000000, B11000000,
Il ' Booooooo1, B11000000,
800000001, B11000000,
B00000011, B11100000,
B11110011, B11100000,
311111110, B11111000,
B01111110, B111l1111,
B00110011, B10011111,
B00011111, B11111100,
B00001101, B01110000,
800011011, B10100000,
B00111111, B11100000,
B00111111, B1111000,
B01111100, B11110000,
B01110000, B01110000,
B00000000, B00110000 }:

#1f (SSD1306_LCDHEIGHT '= 32)

File Edit Sketch Tools Help

o

Q! Ble Edit View System Analyze Blocks StateChans Digital Powes Toolbox Examples Wireless Comm OpenVision Embedded lools Window Heip

X

X

DEEE 2B L5 2F bl es T orunyEmmw o @@ £EHEQ
S>> <= 2nuT xS+ HERD xSt Wz B waie i E e
variable @ @
@ Blocks =
= (= Embedded ‘*
= Arduino =
Ao Confra
4 ADC -
% Digital /O External Defintion Properties
= Extern
Bxtern Definition
Extern Function Extemal Defird i
Extern Read <Adafruit_GFX.h>
Extern Wiite L™ Hinclude <Adafui_ 5501306 h =
@ R2C (Hidefine OLED_RESET 4
& PWM Adafrat_SSD1306 display(OLED_RES!
@ Serial Uart
& Sim
- SP1

4 Target Interface
About Embedded Target Support..

Extemal .obj fles:

- C2407

& CortedM3

3 E;:omo Libeary Modules:

& F280x

- F281X Adafiur_GFX_LbraryAdafruit 5501308

- Generic MCU

st Select Libiary Moduies

& Piccolo

- T116-bit Digital Motor Control Blocks | = e

@ T132-bit Digital Motor Control Blocks
@ TIMotorWare

(4 OpenVision

- Comm

@ Wireless

- Examples

(5 Toolbox

- Digital Power

&) State Charts

Blks 2 Rng 0:10 _Step 05 TO RK2

2022.1 Embed

299

15.

16.
17.

Extending the Arduino Block Set

In the Extern Definition window, rename the Adafruit_GFX.h and
Adafruit_SSD1306.h to Adafruit_GFX.cpp and Adafruit_SSD1306.cpp.
The CPP files contain all the driver logic.

Click OK.

Integrate a setup loop into the diagram using the Extern Function block.

a. Insert an Extern Function block into the diagram beneath the Extern
Definition block.

b. Inthe Arduino sketch, copy the following code into the Extern Function
block under Function Name:

display.begin(SSD1306_SWITCHCAPVCC, ©x3C);

display.display();

delay(2000);

display.clearDisplay();

display.setTextSize(1);

display.setTextColor(WHITE);

display.setCursor(e,9);

display.display();

Function M ame:

Input Ping:

Drata Type:

Fiadix Point:

External Function Call Properties

dizplay. display(];

delay(2000];

dizplay. clearDisplay(];

display. zetT extSize(1):
dizplay. zetT extColorfwHITE];
dizplay. setCursor(0,0];
display. display(l]

1]

Jse "$n' to reference pin m: i.e. foo[$1.32)

i Do not declare function

Return VY alue Type

[1Has return value

char

0 “Word Size:

LCancel Help

300

2022.1 Embed

Extending the Arduino Block Set

Your diagram will look like this:

[Arduino Config: Uno@16MHz |

Extern Definition (=]

#include =Adafruit_GFX.cpp=
#include =Adafruit_SS0D1306.cpp=

#define OLED_RESET 4
Adafruit_S350D1306 display(OLED_RE:

displaybegin(330D1306_SWITCHCAPYCC, 0x3C);
display.display();

delay(2000);

display.clearDisplay();

displaysetText3Size(1);
displaysefTextColor(WHITE)
displaysetCursor(0,0};

display.display();

c. Encapsulate the Extern Function block in a compound block and
name it Setup.

d. CTRL-right-click over Setup and in the dialog box, activate Enabled
Execution and click OK.

B Compound Properties *
Compound Name

Setup

Type Ctl+ENTER to enter a new line
Protection Appearance
[locked []Read Only [JUse Bitmap | Select Image...

Password: l:l [5et Color]

[Hide in Display Mode [[] Do not Snap to Grid Localy
[C]Create Dialog from contained Dialog Constants

ons for contained compound dialogs
(Enabled Executio
ion to RAM

[Local Time Step: 0.01
Codegen as Background Thread

Execute on Intemupt: | Salect.

lillmvptenu} Halﬂer Plﬁmpﬁ? v

2022.1 Embed 301

18.
19.

20.

21.

22

Extending the Arduino Block Set

e. Wire avariable block into Setup and set the variable block to
$firstPass. Because Setup runs only once at boot, the $firstPass flag
is used to control the enabled compound to run once at boot.

[Arduino Config: Uno@16MHz |

=]

Extern Definition

#include =Adafruit_GFX cpp=
#include =Adafruit_S3D1306.cpp=

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RES

HirstPass

Add one more Extern Function block to the top level of your diagram.

In the Arduino sketch, copy the following code into the Extern Function

block under Function Name:

Display.println(“Hello, world!”);

display.display();

Print Text.

Execution and click OK.

Encapsulate the Extern Function block in a compound block and name it

CTRL-right-click over Print Text and in the dialog box, activate Enabled

. Wire a pulseTrain block into Print Text and set the Time Delay to 2s and
the Time Between Pulses to 1. The pulseTrain block sets the frequency at

which to print Hello, world!.

302

2022.1 Embed

Extending the Arduino Block Set

Your diagram will look like this:

[Arduino Config: Uno@16MHz |

Extern Definition (=]

#include «<Adafruit_GFX.cpp=
#include =Adafruit_SS01306.cpp=

#define OLED_RESET 4
Adafruit_55D1306 display(OLED_RES

$firstPass
Print Text

23. To compile the code for the Arduino, click Tools > Code Gen.

Code Generation Properties

ResultFile: | OLED2.c

Result Dir; C:\altair\Embed 20200

Target: Arduino e
Subtarget (set in target config): Uno

Optimization Level:

IUse selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code Add Stadk Chedk Code
[] call from Foreign RTOS/User App On-Chip BRAM Cnly
] Indude Blodk Nesting as Comment Target FLASH
[]Enable Preemption in Main Diagram
Stack size: 1024 Heap size: | 512
Perindic Function Mame; cgMain

Quit Code Gen View, . Compile...

24. In the Code Generation Properties dialog box, click Compile.

25. The code is compiled in a DOS window. When the compilation completes,

click Download in the Code Gen dialog box.

2022.1 Embed

303

Extending the Arduino Block Set

26. In the Download to Arduino dialog box, click Download.

Download to Arduino >

Target Execution File:

C:hAlkairtE mbed20204cg O LED 2. elf

Download directly to FLASH

[Qut | | Cofinfo. | | Download | | Help

The text Hello, world! is displayed on the SSD1306.

304 2022.1 Embed

Arduino Pin Mapping

Arduino Connector ATmega2560 (ATmega32u4) ATmegal68/328
(Mega 2560) (Leonardo) (Uno)
Board Pin Chip Port and Channel Chip Port and Channel Chip Port and Channel
Analog pin 0 PFO (ADCO) PF7 (ADC7/TDI) PCO (ADCO/PCINTS)
Digital pin 54 Digital pin 18 Digital pin 14
Analog pin 1 PF1 (ADC1) PF6 (ADC6/TDO) PC1 (ADC1/PCINT9)
Digital pin 55 Digital pin 19 Digital pin 15
Analog pin 2 PF2 (ADC2) PF5 (ADC5/TMS) PC2 (ADC2/PCINT10)
Digital pin 56 Digital pin 20 Digital pin 16
Analog pin 3 PF3 (ADC3) PF4 (ADC4/TCK) PC3 (ADC3/PCINT11)
Digital pin 57 Digital pin 21 Digital pin 17
Analog pin 4 PF4 (ADC4 /TMK) PF1 (ADC1) PC4 (ADC4/SDA/PCINT12)
Digital pin 58 Digital pin 22 Digital pin 18
Analog pin 5 PF5 (ADC5 /TMS) PFO (ADCO0) PC5 (ADC5/SCL/PCINT13)
Digital pin 59 Digital pin 23 Digital pin 19
Analog pin 6 PF6 (ADCS6)
Digital pin 60
) PF7 (ADC7)
Analog pin 7 Digital pin 61
. PKO (ADC8 /PCINT16)
Analog pin 8 Digital pin 62
. PK1 (ADC9 /PCINT17)
Analog pin 9 Digital pin 63
. PK2 (ADC10 /PCINT18)
Analog pin 10 Digital pin 64
. PK3 (ADC11 /PCINT19)
Analog pin 11 Digital pin 65

2022.1 Embed

305

https://www.arduino.cc/en/Hacking/PinMapping2560
https://www.arduino.cc/en/Hacking/PinMapping32u4
https://www.arduino.cc/en/Hacking/PinMapping168

Arduino Pin Mapping

Analog pin 12 Egi;fg::éz /PCINT20)

Analog pin 13 Egi;fg:g [PCINT21)

Analog pin 14 E:;iegfp?lr?;‘; [PCINT22)

Analog pin 15 E:;Ttegfgr?g [PCINT23)

Digital pin 0 PEO (RXDO/PCINT8) (RX0) PD2 (RX DI/AINL/INT2) (RX) | PDO (PCINT16/RXD) (RX0)

Digital pin 1 PE1 (TXDO) (TX0) PD3 (TXD1/INT3) (TX) PD1 (PCINT17/TXD) (TX0)

Digital pin 2 PE4 (OC3B/INT4) (PWM) PD1 (SDA/INT1) PD2 (PCINT18/INTO)

Digital pin 3 PE5 (OC3C/INT5) (PWM) l(:oD CO OB/SCL/INTO) (PWM) ?P[\);,S;C'NHQIOCZB/'NTD

Digital pin 4 PG5 (OCOB) (PWM) PD4 (ICP1/ADCS) PD4 (PCINT20/XCK/TO)

Digital pin 5 PE3 (OC3A/AIN1) (PWM) PC6 (OC3A/#0C4A) (PWM) PD5 (PCINT21/0OX0B/T1) (PWM)

Digital pin 6 PH3 (OC4A) (PWM) ?TE();O CADIADC10) (PWM) ?P%&?C'NTZZ/OCON AINO)

Digital pin 7 PH4 (OC4B) (PWM) PE6 (INT.6/AINO) PD 7 (PCINT23/AIN1)

Digital pin 8 PH5 (OC4C) (PWM) PB4 (ADC11/PCINT4) PBO (PCINTO/CLKO/ICP1)
PB5

Digital pin 9 PH6 (OC2B) (PWM) (PCINT5/OC1A/#OC4B/ADCL | PB1 (OC1A/PCINT1) (PWM)
2) (PWM)
PB6

Digital pin 10 PB4 (OC2A/PCINT4) (PWM) | (PCINT6/OC1B/OC4B/ADC13 | PB2 (SS/OC1B/PCINT2) (PWM)
) (PWM)

- . PB7 PB3 (MOSI/OC2A/PCINT3)

Digital pin 11 PB5 (OC1A/PCINTS) (PWM) | (PCINT7/OCOA/OCLC/#RTS) (PWM)
(PWM)

Digital pin 12 PB6 (OC1B/PCINT6) (PWM) | PD6 (T1/#OC4D/ADCY) PB4 (MISO/PCINT4)

Digital pin 13 (PPE(,C'\(/I())COA/OClC/PCINTY) (PIEIZS/CLKO/)OC4A) PWM) PB5 (SCK/PCINT5)

Digital pin 14 PJ1 (TXD3/PCINT10) (TX3)

Digital pin 15 PJO (RXD3/PCINT9) (RX3)

Digital pin 16 PH1 (TXD2) (TX2)

Digital pin 17 PHO (RXD2) (RX2)

Digital pin 18 PD3 (TXD1/INT3) (TX1)

Digital pin 19 PD2 (RXDI/INT2) (RX1)

Digital pin 20 PD1 (SDA/INT1) (SDA)

Digital pin 21 PDO (SCL/INTO) (SCL)

Digital pin 22 PAO (ADO)

Digital pin 23 PA1 (AD1)

Digital pin 24 PA2 (AD2)

306

2022.1 Embed

Arduino Pin Mapping

Digital pin 25 PA3 (AD3)

Digital pin 26 PA4 (AD4)

Digital pin 27 PAS5 (AD5)

Digital pin 28 PA6 (AD6)

Digital pin 29 PA7 (AD7)

Digital pin 30 PC7 (A15)

Digital pin 31 PC6 (A14)

Digital pin 32 PC5 (A13)

Digital pin 33 PC4 (A12)

Digital pin 34 PC3 (A11)

Digital pin 35 PC2 (A10)

Digital pin 36 PC1 (A9)

Digital pin 37 PCO (A8)

Digital pin 38 PD7 (TO)

Digital pin 39 PG2 (ALE)

Digital pin 40 PG1 (RD)

Digital pin 41 PGO (WR)

Digital pin 42 PL7

Digital pin 43 PL6

Digital pin 44 PL5 (OC5C) (PWM)
Digital pin 45 PL4 (OC5B) (PWM)
Digital pin 46 PL3 (OC5A) (PWM)
Digital pin 47 PL2 (T5)

Digital pin 48 PL1 (ICP5)

Digital pin 49 PLO (ICP4)

Digital pin 50 PB3 (MISO/PCINT3) (MISO)
Digital pin 51 PB2 (MOSI/PCINT2) (MOSI)
Digital pin 52 PB1 (SCK/PCINT1) (SCK)
Digital pin 53 PBO (SS/PCINTO) (SS)

2022.1 Embed

307

Arduino PWM Frequency Table

Timer Prescaler Arduino Target
Uno Leonardo Mega 2560
Frequency(kHz) | Frequency(kHz) | Frequency(kHz)
Timer 0 1625 62.5 62.5
8 | 07.8125 07.8125 07.8125
64 | 00.9765625 00.9765625 00.9765625
256 | 00.244140625 | 00.244140625 | 00.244140625
1024 | 00.061035156 | 00.061035156 | 00.061035156
Timer 1 1 31.25
8 03.90625
64 Scheduler 00.48828125 Scheduler
256 00.122070313
1024 00.030517578
Timer 2 1]62.5 62.5
8 | 07.8125 07.8125
32 | 01.953125 01.953125
64 | 00.9765625 Not present 00.9765625
128 | 00.48828125 00.48828125
256 | 00.244140625 00.244140625
1024 | 00.061035156 00.061035156
Timer 3 1 31.25
8 03.90625
64 Not present Scheduler 00.48828125
256 00.122070313
1024 00.030517578

2022.1 Embed

309

Timer 4 1 31.25 31.25
2 15.625
4 07.8125
8 03.90625 03.90625
16 01.953125
32 00.9765625
64 00.48828125 00.48828125
128 Not present 00.244140625
256 00.122070313 | 00.122070313
512 00.061035156
1024 00.030517578 | 00.030517578
2048 00.015258789
4096 00.007629395
8192 00.003814697
16384 00.001907349
Timer 5 1 31.25
8 03.90625
64 Not present Not present 00.48828125
256 00.122070313
1024 00.030517578

Arduino PWM Frequency Table

310

2022.1 Embed

Index

$
$isCodeGen flag 34

M files
importing 249

.MAT files
importing 250

A

abs 230

Accessing the Chip Temp sample diagram 23

ACI Flux Estimator 201

ACI Motor 199

ACI Speed Estimator 202

ADC Config 176

ADC Config for Arduino 177

ADC Config for C2407 177

ADC Config for Delfino, F280X, and Piccolo 179

ADC Config for F280X — early versions 180

ADC Config for F281X 178

ADC Config for STM32 181

ADC10/12 77

ADC10/12 Config for MSP430 183

Adjusting C2000 and ARM Cortex M3 target
update time 37

Analog Comparator DAC 78

Analog Comparator DAC - Comparator Subsystem
(CMPSS) 79

Analog Comparator DAC — No Comparator
Subsystem 78

Analog In 80

Analog Input 80

Analog Input for Arduino, C2407, Delfino, F280x,
F281X, Piccolo 80

Analog Input for STM32 81

and 232

Angle Estimator 215

Arduino

Analog In 80

Analog Input 80

Digital Input 90

Digital Output 92

Extern Definition 106

Extern Function 107

Extern Read 109

Extern Write 110

GPIO In 113

I2C Read Buffer 120, 121

I2C Write Buffer 122

JSON 122

PWM 137

Serial UART Read 142

Serial UART Write 142, 143

SPI Read 146

SPI Write 149
Arduino Pin Mapping 309
Arduino PWM Frequency Table 313
ARM Cortex M3 Config 164
atan2 234
Automatic Data Update 160
Automatically Generating Executable Code 39

B

Blocks that generate stand-alone C code 43
Building a custom DLL 281

C

C code generation
compound blocks 41
from auto-generated DLLs 284
translation of variable names 41
with custom blocks 74
C Code Support Libraries
object files 295
C Support Libraries 295
C support library source code 296
compiling and linking 297
Cc2407
Analog In 80
Analog Input 80
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
Event Capture 105
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Full Compare Action 111
Full Compare PWM 111
Get CPU Usage 113

2022.1 Embed

311

GPIO In 113
GPIO Input 114
GPIO Out 116
I/O Memory Read 120
I/O Memory Write 120
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
PWM 137
PWM 131
Serial UART Read 142
Serial UART Write 142, 143
SPI Read 148
Target Interface 152, 154
C24x
Get CPU Usage 113
GPIO In 113
GPIO Input 114
GPIO Out 116
C24X
Analog In 80
Analog Input 80
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
Target Interface 152, 154
Calling a DLL from an Embed diagram 279
Calling the generated code from a user application
74
CAN Config 184
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
Check diagram parameters 72
Checking for performance degradation 64
Choosing the Web Interface Source 160
Clarke Transform 202
Code Gen command 50, 52
Code generation considerations for low RAM
targets 42
Communicating with an embedded simulation
object 291
Communication interfaces 36
Comparator 85
Comparing simulation speed 280
Compiling and linking the C support library source
code 297
Compiling the source diagram 25
Completing the controller implementation 265
Config commands
ADC 176
ARM Cortex M3 164
CAN 184
DMA 185
F28X 167
Generic MCU 169

Index

GPIO 187
12C 188
MSP 171
SD16 190
Serial UART 191
SP1192, 194
Configuration 159
Configure the compound block to communicate
with the target 41
Configure the hardware and the diagram 67
Configure the target 41
Configuring a sample Web Server block 155
Configuring input and output connector pins 156
Configuring the Web Address 159
Confirm that data can be printed to the serial
monitor 69
Confirm that the pushbutton is working 71
const 234
Constructing a floating-point model 266
Constructing the control law 264
Constructing the controller 261, 267, 271
Constructing the door system 260
Constructing the encoder 261
Constructing the encoder feedback 263
Constructing the fan-paddle-sensor 269
Constructing the Fixed-Point Volts to Degrees
Converter 270
Constructing the gearbox 259
Constructing the motor 257
Constructing the open/close command 262
Constructing the Volts to Degrees Converter 268
Control 157
Control execution order 61
Controller Read Property 216
Controller Write Property 217
Controlling block execution 60
Controlling code placement 65
Controlling execution 62
Controlling execution on embedded targets 60
convert 235
Converting to scaled fixed-point control 263
Copying code from FLASH to RAM 60
Cortex M3
Analog In 80
Analog Input 80
Digital Input 90
Digital Output 91
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Get CPU Usage 113
I2C Read Buffer 120, 121
I2C Write Buffer 122
Monitor Buffer Empty 123
Monitor Buffer Read 124

312

2022.1 Embed

Monitor Buffer Write 124

Serial UART Read 142

Serial UART Write 142, 143

SPI Read 148

SPI Write 149, 150

Target Interface 152, 154

Web Server 154
cos 235
CRC16 235
Create custom-rate functions 60
Creating a debug diagram 66
Creating a DLL 277
Creating a Simulation Object 289
Creating and executing interrupt handlers 61
Current Model 203

D

DAC 85
DAC for Delfino, F280x, Piccolo 86
DAC for STM32 87
DAC12 88
Debugging code on Arduino, ARM Cortex M3,
Linux, C2000, and STM32 targets 66
Debugging code on embedded targets 62
Debugging real-time analog waveforms using the
Arduino serial port 73
Debugging techniques 62
Default Value 159
Delay functions 300
Delfino
Analog Comparator DAC 78
Analog In 80
Analog Input 80
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
DMA Enable 92
eCAP 93
eCAP Action 100
eCAP Action Write 101
eCAP Chopper 102
eCAP Force Action 102
eCAP Force Action Write 103
eCAP PWM 94
ePWM 95, 103
eQEP 104, 105
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Get CPU Usage 113
GPIO In 113
GPIO Input 114
GPIO Out 119
HRCAP 119

Index

I2C Read Buffer 120, 121
I2C Write Buffer 122
JSON 122
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
Serial UART Read 142
Serial UART Write 142, 143
Sigma Delta Filter Module 144
SPI Read 148
SPI Write 149, 150
Target Interface 152, 154
Determine stack and heap use 42
Digital In 89
Digital Input 90
Digital Input for Arduino 90
Digital Input for Cortex M3, MSP430 90
Digital Motor Control block set See DMC block set
Digital Out 91
Digital Output 91
Digital Output for Arduino 92
Digital Output for Cortex M3, MSP430 91
Displaying Coff information 55
div 236
DLL generation 277
building custom DLLs 281
calling from a diagram 279
comparing simulation speed 280
creating 277
LIBC.LIB LINK warning 285
LINK messages that can be ignored 287
Out of Environment Space message 285
troubleshooting 285
verifying results 280
DMA Config 185
DMA Enable 92
DMC block set
ACI Flux Estimator 201
ACI Motor 199
ACI Speed Estimator 202
Clarke Transform 202
Current Model 203
Inverse Clarke Transform 203
Inverse Park Transform 204
Park Transform 204
Phase Voltage Current 204
PID Regulator 206
QEP Speed 205
Ramp Generator 206
Resolver Decoder 207
SMO Position Estimator 208
Space Vector Generator (Magniture/Frequency
209
Space Vector Generator (Quadrature Control)
210
Space Vector PWM 210

2022.1 Embed

313

Speed Calculator 211
V/Hz Profile Generator 212
Downloading and debugging 27

E

eCAP 93

eCap PWM 94

Embed Viewer 20

Embedded diagrams 34

Embedded system prototyping methodology 273

ePWM 95

ePWM Action 100

ePWM Action Write 101

ePWM Chopper 102

ePWM digital compare 99

ePWM for simulation 103

ePWM Force Action 102

ePWM Force Action Write 103

ePWM TRIPSEL Config 100

eQEP 104

eQEP for simulation 105

equal to (==) 223

Estimator Read Property 217

Estimator Write Property 217

Event Capture 105

Event logging 75

Examining signal values 63

Examining waveforms 64

Example: Importing an Arduino library that
displays text on an SSD1306 300

Execute initialization code at boot time 62

Execution timing 63

Extending the Arduino Block Set 299

Extern Definition 106

Extern Function 107

Extern Read 109

Extern Write 110

F

F280x
Analog Comparator DAC 78
Analog In 80
Analog Input 80
CAN Receive 82, 83
CAN Transmit Ready 84
DAC 86
eCAP 93
eCAP Action 100
eCAP Action Write 101
eCAP Chopper 102
eCAP Force Action 102
eCAP Force Action Write 103

Index

ePWM 95
eQEP 104, 105
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Get CPU Usage 113
GPIO In 113
GPIO Input 114
I2C Read Buffer 120, 121
I12C Write Buffer 122
JSON 122
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
Serial UART Read 142
Serial UART Write 142, 143
SPI Read 148
SPI Write 149, 150
Target Interface 152, 154
F280xHRCAP 119
F281X
Analog In 80
Analog Input 80
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
DMA Enable 92
Event Capture 105
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Full Compare Action 111
Full Compare PWM 111
Get CPU Usage 113
GPIO In 113
GPIO Input 114
I2C Read Buffer 120, 121, 122
JSON 122
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
PWM 137
PWM 131
Quadrature Encoder 138
Serial UART Read 142
Serial UART Write 142, 143
SPI Read 148
SPI Write 149, 150
Target Interface 152, 154
F28X Config 167
F28x Config for Delfino, F280X, and Piccolo 168
F28x Config for F281X 169

eCAP PWM 94 Fixed Point block set 221
ePWM 103 Fixed Point Block Set Configure command 256
314 2022.1 Embed

Fixed-Point blocks

1/S 240

abs 230

and 232

atan2 234

const 234

convert 235

cos 235

CRC16 235

div 236

equal to 223

gain 237

greater than 227

greater than or equal to 227

less than 222

less than or equal to 223

limit 238

limitedIntegrator 240

merge 240

mul 241

negate 228

not 241

not equal to 226

or 242

Pl Regulator 244

PID Regulator 243

sampleHold 244

shift 246

sign 247

sin 247

sqrt 248

sum 248

transferFunction 249

unitDelay 253

xor 255
Fixed-point implementation of PID position

controller 270

Fixed-point implementation of the controller 262
Fixed-Point tutorials

Fixed-point implementation of controller 257

position control application 266
Flashing generated code with UniFlash 56
Floating-point implementation 257
Full Compare Action 111
Full Compare PWM 111

G

gain 237

Generate and download code to run in FLASH in
batch mode 53

Generate and download code to run in FLASH on
Arduino, MSP430, and STM32 targets 52

Generate and download code to run in RAM on
ARM Cortex M3, Linux, and C2000 targets 49

Generate web page 160

Index

Generating and downloading code to target
devices 49
Generating C code
flashing with Uniflash 56
integrating handwritten code 73
Generating code as preemptible background
thread 61
Generating code from automatically-generated
DLLs 284
Generating code from custom blocks 74
Generating DLLs 277
Generating Simulation Objects 289
Generic MCU
Analog In 80
Analog Input 80
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
JSON 122
Generic MCU Config 169
Generic MCU target support 40
Get CPU Usage 113
Get Target Stack and Heap command 42, 197
GPIO Config 187
GPIO In 113
GPIO In C2407, Delfino, F280x, F281X, Generic
MCU, Piccolo, STM32 113
GPIO In for Linux Raspberry Pi 113
GPIO Input 114
GPIO Input for C2407, Delfino, F280x, F281X,
Generic MCU, Linux Raspberry Pi, Piccolo
114
GPIO Input for STM32 115
GPIO Out 116
GPIO Out for C2407, Delfino, F280x, F281X,
Generic MCU, Piccolo, STM32 116
GPIO Out for Linux Raspberry Pi 116
GPIO Output 117
GPIO Output for C2407, Delfino, F280x, F281X,
Generic MCU, Linux Raspberry Pi, Piccolo
117
GPIO Output for STM32 118
greater than 227
greater than or equal to 227

H

Hall Sensor 119
Hardware-in-the-Loop simulation 37
Hardware-in-the-Loop simulations See HIL
simulations
High power safety concerns 38
HIL simulations 73
Digital Input block 73
Digital Output block 73

2022.1 Embed

315

HRCAP 119

I/O Memory Read 120
I/O Memory Write 120
I2C Config 188
I2C Config for Arduino, Cortex M3, Delfino,
F280X, Linux Raspberry Pi, Piccolo, and
STM32 188
I2C Config for MSP430 189
I2C Read Buffer 120
[2C Start Communication 121
I12C Write Buffer 122
Implementing a PID position controller 266
Implementing an elevator door control system 257
importing data
transferFunction block 249
Importing libraries with the Arduino Library
Manager 299
Integrating handwritten code with generated code
73
Interfacing with code running on Arduino, ARM
Cortex M3, Linux Raspberry Pi, C2000, and
STM32 devices 34
Interrupt handlers
creating 61
setting sample rate 61
Introduction 1
Inverse Clarke Transform 203
Inverse Park Transform 204
IP Address and Subnet Mask 160

J

JSON 122

JTAG connectors 66

JTAG Hotlink
enabling 50, 52

L

less than 222
less than or equal to 223
limit 238
limitedintegrator (1/S) 240
Linear System blocks
transferFunction 249
linearization 249
linearization data
.M file 249
.M file 249
.MAT file 250
LINK warning about LIBC.LIB 285
LINK warning messages that can be ignored 287
Linux Raspberry Pi

Index

I2C Read Buffer 120, 121
Serial UART Read 142
Serial UART Write 142, 143
SPI Read 146

SPI Write 149

Target Interface 152

M

MAC Address 160
MatLab

importing data from 250
Measuring CPU utilization 37
Measuring stack and heap usage 65
merge 240
Model-Based Development with Embed 33
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
Monitoring register values 63
Motor Control 218
MQTT Publish 125
MQTT Subscribe 126
MSP Config 171
MSP430

ADC10/12 77

Analog In 80

Analog Input 80

Comparator 85

DAC12 88

Digital Input 90

Digital Output 91

Event Capture 105

Extern Definition 106

Extern Function 107

Extern Read 109

Extern Write 110

Get CPU Usage 113

I2C Read Buffer 120, 121

I2C Write Buffer 122

opAmp 128

PWM 137

Read Target Memory 140

SD16 140, 142

SD16A 141

segmentLCD 141

Serial UART Write 142, 143

SPI Read 148

SPI Write 149, 150

Target Interface 152, 154
mul 241

N

New features 17
not 241

316

2022.1 Embed

not equal to (!=) 226

O

Object files 295

Online and local help 18

Op Amp 128

OpenVision blocks 48

or 242

Out of Environment Space error message 285

P

Page Header 160

Park Transform 204

Phase Voltage Calc 204

Pl Regulator 244

Piccolo
Analog Comparator DAC 78
Analog In 80
Analog Input 80
CAN Receive 82
CAN Transmit 83
CAN Transmit Ready 84
DAC 86
DMA Enable 92
eCAP 93
eCAP Action 100
eCAP Action Write 101
eCAP Chopper 102
eCAP Force Action 102
eCAP Force Action Write 103
eCAP PWM 94
ePWM 103
ePWM 95
eQEP 104, 105
Extern Definition 106
Extern Function 107
Extern Read 109
Extern Write 110
Get CPU Usage 113
GPIO In 113
GPIO Input 114
GPIO Out 116
HRCAP 119
12C Read Buffer 120, 121
12C Write Buffer 122
JSON 122
Monitor Buffer Empty 123
Monitor Buffer Read 124
Monitor Buffer Write 124
Serial UART Read 142
Serial UART Write 142, 143
Sigma Delta Filter Module 144
SPI Read 148
SPI Write 149, 150

Index

Target Interface 152, 154
PID Regulator 206, 243
Pin Labels, Type, In/Out, and Pin 156
Preparing a diagram for code generation 41
Processor-in-the-Loop simulation 34
Professional and Basic editions 19
Profile matching 65
Prototyping the embedded control system 265
PWM 129
PWM for Arduino 129
PWM for C2407, F2812 131
PWM for Linux Raspberry Pi 129
PWM for MSP430 131
PWM for simulation 137
PWM for simulation for Arduino 137
PWM for simulation for C2407, F281X, MSP430,
STM32 137
PWM for simulation for Linux Raspberry Pi 138
PWM for STM32 132

Q

QEP Speed 205

Quadrature Encoder 138
Quadrature Encoder for F281X 138
Quadrature Encoder for STM32 139
Quick Start 23

R

Ramp Generator 206
Raspberry Pi
[2C Write Buffer 122
JSON 122
Read and write directly to device registers 61
Read Target Memory 140
Recording event statistics 63
Reset Target command 197
Resolver Decoder 207
Resources for learning Embed 18
Resources used by targets 39
Running generated code on HIL hardware 73
Running the diagram and viewing results 30

S

Sample diagrams 18
Sample diagrams that use Arduino libraries 299
Sample file with simulation object interface 292
Sample rate
target sampling too fast 61
sampleHold 244
SC16 Config 190
SD16 140
SD16A 141
segmentLCD 141

2022.1 Embed

317

Serial UART Config 191
Serial UART Read 142
Serial UART Write 142
Set PWM Mode 143
Set the sample rate for the target application 61
Setting diagram parameters 30
Setting state chart breakpoints 63
Setting up DCO and external clocks 172
Setting up libraries imported with the Arduino
License Manager 300
shift 246
Sigma Delta Filter Module 144
sign 247
Similarities and differences between 16-bit and 32-
bit TI DMC block 199
Simulating with a debug diagram 67
Simulation object generation 289, 299
sin 247
SMO Position Estimator 208
Software-in-the-Loop simulation 33
Source and debug diagrams for Arduino, ARM
Cortex M3, Linux Raspberry Pi, C2000, and
STM32 targets 35
Space Vector Generator (Magnitude/Frequency)
209
Space Vector Generator (Quadrature Control) 210
Space Vector PWM 210
Special-purpose add-on modules 20
Specifying a local step size and local bounds 60
Speed Calculator 211
Speed considerations 41
SPI Config 192, 194
SPI Read 146
SPI Read for Arduino 146
SPI Read for C2407, Cortex M3, Delfino, F280x,
F281X, MSP430, Piccolo, STM32 148
SPI Read for Linux Raspberry Pi 146
SPI Write 149
SPI Write for Arduino 149
SPI Write for C2407, Cortex M3, Delfino, F280x,
F281X, MSP430, Piccolo, STM32 150
SPI Write for Linux Raspberry Pi 149
sqrt 248
Standard blocks 43
StateChart elements 48
state-space matrices 249
STM32
JSON 122
PWM 137
Serial UART Read 142
Serial UART Write 142, 143
SPI Read 148
SPI Write 150
Target Interface 152
sum 248
Support library 56

Index

T

Target algorithm
controlling execution order 61
custom-rate functions 60
developing 41
executing initialization code at boot time 62
reading to/writing from device registers 61
speed considerations 41
tuning 66
validating 66
Target devices with no file system 41
Target Interface 152
Target Interface menu
Get Target Stack and Heap command 50, 52
Target resources managed by Embed 40
Target sampling too fast 61
Target support 39
Arduino 49
ARM Cortex M4 40
ARM M4 49
Delfino 49
F280X 49
F2812 49
Generic MCU 40
LF2407 40, 49
Piccolo 49
Target suppport
ARM Cortex M3 40
ARM M3 49
Targeting C code for unsupported platforms 296
Targets with no floating-point unit 41
Technical support 18
Texas Instruments Digital Motor Control block set
See DMC block set
The Altair Embed product family 19
Tools menu
Code Gen command 50, 52
transferFunction 249
transferFunction block 249
Troubleshooting 285
Tutorials 257

U

UDP Read 151

UDP Write 152

Uniflash 56

unitDelay 253

Use existing web page 161
Use existing web site 161
Using ADC Config 176
Using Arduino Config 163
Using ARM Cortex M3 Config 164
Using CAN Config 184
Using DMA Config 185

318

2022.1 Embed

Using ESP8266WiFi Config 186

Using Extern Definition and Extern Function
blocks to add a C function to your diagram 74

Using Extern Read and Extern Write blocks to
merge your code 74

Using F28X Config 167

Using Generic MCU Config 169

Using GPIO Quialification 187

Using 12C Config 188

Using MSP430 Config 171

Using SD16 Config 190

Using serial monitor to debug code on Arduino
targets 67

Using Serial UART Config 191

Using SPI Config 192

Using SPI Config for Arduino 194

Using SPI Config for Linux 196

Using STM32 Config 175

Using the code generation parameters 53

Using the createSim function 291

Using the Extern Definition and Extern Function
blocks 300

Using the F240X Config 167

Using the Fixed Point Block Set 221

Using the Get Target Stack and Heap command
197

Using the Linux Config 165

Using the Peripheral Config blocks 176

Using the Reset Target command 197

Using the Target Config blocks 162

Using the Target Interface commands 197

Using the target support blocks 77

Using the Target Support Blocks and Commands
77

Using the TI DMC Block Set 199

Using the TI MotorWare Block Set 215

Using the vsmCgGetLastErrorString() 292

Using the vsmCgRuntimeCommand 291

Using the Web Server block in a diagram 161

Vv

V/Hz Profile Generator 212
Variable names 41
Verifying DLL results 280
Videos 18
VSMDLL32.BAT 285

W

Watch Dog 154
Web Page Labels 158
Web Server 154
configuring 155
example 161
Generate Web Page option 160

Index

Get Data Automatically 160
input and output pins 156
IP address 160
MAC address 160
Page Header 160
Subnet Mask 160
Use Existing Web Page option 161
Use Existing Web Site option 161
web address 159
Web Interface Source 160
Window Header 160
What you get with Embed 16
Window Header 160

X

-X (negate) 228
xor 255

2022.1 Embed

319

	Introduction
	What you get with Embed
	New features
	Resources for learning Embed
	Online and local help
	Videos
	Sample diagrams
	Technical support

	The Altair Embed product family
	Professional and Basic editions
	Special-purpose add-on modules
	Embed Viewer

	Quick Start
	Accessing the Chip Temp sample diagram
	Compiling the source diagram
	Downloading and debugging
	Setting diagram parameters
	Running the diagram and viewing results

	Model-Based Development with Embed
	Software-in-the-Loop simulation
	Embedded diagrams
	$isCodeGen flag

	Processor-in-the-Loop simulation
	Interfacing with code running on Arduino, ARM Cortex M3, Linux Raspberry Pi, C2000, and STM32 devices
	Source and debug diagrams for Arduino, ARM Cortex M3, Linux Raspberry Pi, C2000, and STM32 targets
	Communication interfaces
	Adjusting C2000 and ARM Cortex M3 target update time

	Measuring CPU utilization

	Hardware-in-the-Loop simulation
	High power safety concerns

	Automatically Generating Executable Code
	Target support
	Resources used by targets
	Target resources managed by Embed
	Generic MCU target support

	Preparing a diagram for code generation
	Configure the target
	Configure the compound block to communicate with the target
	Targets with no floating-point unit
	Target devices with no file system
	Variable names
	Speed considerations
	Code generation considerations for low RAM targets
	Determine stack and heap use
	Blocks that generate stand-alone C code
	Standard blocks
	OpenVision blocks
	StateChart elements

	Generating and downloading code to target devices
	Generate and download code to run in RAM on ARM Cortex M3, Linux, and C2000 targets
	Generate and download code to run in FLASH on Arduino, MSP430, and STM32 targets
	Generate and download code to run in FLASH in batch mode
	Using the code generation parameters
	Displaying Coff information
	Support library

	Flashing generated code with UniFlash
	Controlling execution on embedded targets
	Create custom-rate functions
	Controlling block execution
	Copying code from FLASH to RAM
	Specifying a local step size and local bounds
	Generating code as preemptible background thread
	Creating and executing interrupt handlers

	Set the sample rate for the target application
	Read and write directly to device registers
	Control execution order
	Execute initialization code at boot time

	Debugging code on embedded targets
	Debugging techniques
	Controlling execution
	Examining signal values
	Setting state chart breakpoints
	Monitoring register values
	Recording event statistics
	Execution timing
	Examining waveforms
	Checking for performance degradation
	Measuring stack and heap usage
	Controlling code placement
	Profile matching

	Debugging code on Arduino, ARM Cortex M3, Linux, C2000, and STM32 targets
	Creating a debug diagram
	JTAG connectors
	Simulating with a debug diagram

	Using serial monitor to debug code on Arduino targets
	Configure the hardware and the diagram
	Confirm that data can be printed to the serial monitor
	Confirm that the pushbutton is working
	Check diagram parameters

	Debugging real-time analog waveforms using the Arduino serial port

	Running generated code on HIL hardware
	Integrating handwritten code with generated code
	Calling the generated code from a user application
	Using Extern Read and Extern Write blocks to merge your code
	Using Extern Definition and Extern Function blocks to add a C function to your diagram

	Generating code from custom blocks
	Event logging

	Using the Target Support Blocks and Commands
	Using the target support blocks
	ADC10/12
	Analog Comparator DAC
	Analog Comparator DAC – No Comparator Subsystem
	Analog Comparator DAC - Comparator Subsystem (CMPSS)

	Analog In
	Analog Input
	Analog Input for Arduino, C2407, Delfino, F280x, F281X, Piccolo
	Analog Input for STM32

	CAN Receive
	CAN Transmit
	CAN Transmit Ready
	Comparator
	DAC
	DAC for Delfino, F280x, Piccolo
	DAC for STM32

	DAC12
	Digital In
	Digital Input
	Digital Input for Cortex M3, MSP430
	Digital Input for Arduino

	Digital Out
	Digital Output
	Digital Output for Cortex M3, MSP430
	Digital Output for Arduino

	DMA Enable
	eCAP
	eCap PWM
	ePWM
	ePWM digital compare
	ePWM TRIPSEL Config

	ePWM Action
	ePWM Action Write
	ePWM Chopper
	ePWM Force Action
	ePWM Force Action Write
	ePWM for simulation
	eQEP
	eQEP for simulation
	Event Capture
	Extern Definition
	Extern Function
	Extern Read
	Extern Write
	Full Compare Action
	Full Compare PWM
	Get CPU Usage
	GPIO In
	GPIO In for Linux Raspberry Pi
	GPIO In C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32

	GPIO Input
	GPIO Input for C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi, Piccolo
	GPIO Input for STM32

	GPIO Out
	GPIO Out for Linux Raspberry Pi
	GPIO Out for C2407, Delfino, F280x, F281X, Generic MCU, Piccolo, STM32

	GPIO Output
	GPIO Output for C2407, Delfino, F280x, F281X, Generic MCU, Linux Raspberry Pi, Piccolo
	GPIO Output for STM32

	Hall Sensor
	HRCAP
	I/O Memory Read
	I/O Memory Write
	I2C Read Buffer
	I2C Start Communication
	I2C Write Buffer
	JSON
	Monitor Buffer Empty
	Monitor Buffer Read
	Monitor Buffer Write
	MQTT Publish
	MQTT Subscribe
	Op Amp
	PWM
	PWM for Arduino
	PWM for Linux Raspberry Pi
	PWM for C2407, F2812
	PWM for MSP430
	PWM for STM32

	PWM for simulation
	PWM for simulation for Arduino
	PWM for simulation for C2407, F281X, MSP430, STM32
	PWM for simulation for Linux Raspberry Pi

	Quadrature Encoder
	Quadrature Encoder for F281X
	Quadrature Encoder for STM32

	Read Target Memory
	SD16
	SD16A
	segmentLCD
	Serial UART Read
	Serial UART Write
	Set PWM Mode
	Sigma Delta Filter Module
	SPI Read
	SPI Read for Arduino
	SPI Read for Linux Raspberry Pi
	SPI Read for C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32

	SPI Write
	SPI Write for Arduino
	SPI Write for Linux Raspberry Pi
	SPI Write for C2407, Cortex M3, Delfino, F280x, F281X, MSP430, Piccolo, STM32

	UDP Read
	UDP Write
	Target Interface
	Watch Dog
	Web Server
	Configuring a sample Web Server block
	Configuring input and output connector pins
	Pin Labels, Type, In/Out, and Pin
	Control
	Web Page Labels
	Default Value
	Configuration

	Configuring the Web Address
	IP Address and Subnet Mask
	MAC Address
	Automatic Data Update
	Window Header
	Page Header

	Choosing the Web Interface Source
	Generate web page
	Use existing web page
	Use existing web site

	Using the Web Server block in a diagram

	Using the Target Config blocks
	Using Arduino Config
	Using ARM Cortex M3 Config
	Using the Linux Config
	Using the F240X Config
	Using F28X Config
	F28x Config for Delfino, F280X, and Piccolo
	F28x Config for F281X

	Using Generic MCU Config
	Using MSP430 Config
	Setting up DCO and external clocks

	Using STM32 Config

	Using the Peripheral Config blocks
	Using ADC Config
	ADC Config for Arduino
	ADC Config for C2407
	ADC Config for F281X
	ADC Config for Delfino, F280X, and Piccolo
	ADC Config for F280X – early versions
	ADC Config for STM32
	ADC10/12 Config for MSP430

	Using CAN Config
	Using DMA Config
	Using ESP8266WiFi Config
	Using GPIO Qualification
	Using I2C Config
	I2C Config for Arduino, Cortex M3, Delfino, F280X, Linux Raspberry Pi, Piccolo, and STM32
	I2C Config for MSP430

	Using SD16 Config
	Using Serial UART Config
	Using SPI Config
	Using SPI Config for Arduino
	Using SPI Config for Linux

	Using the Target Interface commands
	Using the Get Target Stack and Heap command
	Using the Reset Target command

	Using the TI DMC Block Set
	Similarities and differences between 16-bit and 32-bit TI DMC block
	ACI Motor
	ACI Flux Estimator
	ACI Speed Estimator
	Clarke Transform
	Current Model
	Inverse Clarke Transform
	Inverse Park Transform
	Park Transform
	Phase Voltage Calc
	QEP Speed
	PID Regulator
	Ramp Generator
	Resolver Decoder
	SMO Position Estimator
	Space Vector Generator (Magnitude/Frequency)
	Space Vector Generator (Quadrature Control)
	Space Vector PWM
	Speed Calculator
	V/Hz Profile Generator

	Using the TI MotorWare Block Set
	Angle Estimator
	Controller Read Property
	Controller Write Property
	Estimator Read Property
	Estimator Write Property
	Motor Control

	Using the Fixed Point Block Set
	Fixed Point block set
	less than
	less than or equal to
	equal to (==)
	not equal to (!=)
	greater than
	greater than or equal to
	-X (negate)
	abs
	and
	atan2
	const
	convert
	cos
	CRC16
	div
	gain
	limit
	limitedIntegrator (1/S)
	merge
	mul
	not
	or
	PID Regulator
	PI Regulator
	sampleHold
	shift
	sign
	sin
	sqrt
	sum
	transferFunction
	unitDelay
	xor

	Fixed Point Block Set Configure command
	Tutorials
	Implementing an elevator door control system
	Floating-point implementation
	Constructing the motor
	Constructing the gearbox
	Constructing the door system
	Constructing the encoder
	Constructing the controller
	Constructing the open/close command

	Fixed-point implementation of the controller
	Converting to scaled fixed-point control
	Constructing the encoder feedback
	Constructing the control law
	Completing the controller implementation
	Prototyping the embedded control system

	Implementing a PID position controller
	Constructing a floating-point model
	Constructing the controller
	Constructing the Volts to Degrees Converter
	Constructing the fan-paddle-sensor

	Fixed-point implementation of PID position controller
	Constructing the Fixed-Point Volts to Degrees Converter
	Constructing the controller
	Embedded system prototyping methodology

	Generating DLLs
	Creating a DLL
	Calling a DLL from an Embed diagram
	Verifying DLL results
	Comparing simulation speed
	Building a custom DLL
	Generating code from automatically-generated DLLs
	Troubleshooting
	Out of Environment Space error message
	LINK warning about LIBC.LIB
	LINK warning messages that can be ignored

	Generating Simulation Objects
	Creating a Simulation Object
	Communicating with an embedded simulation object
	Using the createSim function
	Using the vsmCgRuntimeCommand
	Using the vsmCgGetLastErrorString()
	Sample file with simulation object interface

	C Support Libraries
	Object files
	Targeting C code for unsupported platforms
	C support library source code
	Compiling and linking the C support library source code

	Extending the Arduino Block Set
	Sample diagrams that use Arduino libraries
	Importing libraries with the Arduino Library Manager
	Setting up libraries imported with the Arduino License Manager
	Using the Extern Definition and Extern Function blocks
	Delay functions

	Example: Importing an Arduino library that displays text on an SSD1306

	Arduino Pin Mapping
	Arduino PWM Frequency Table
	Index

