
Getting to Know Qt Designer

Launching Designer
Once you have installed Qt, you can start Qt Designer in the same way as any other application on the development host. You can also launch Qt Designer
directly from Qt Creator. Qt Creator automatically opens all .ui files in the integrated Qt Designer, in Design mode.

Generally, the integrated Qt Designer contains the same functions as the standalone Qt Designer. For more information about the differences, see the Qt
Creator Manual.

If you have large forms that do not fit in the Qt Creator Design mode, you can open them in the stand-alone Qt Designer.

The User Interface
When used as a standalone application, Qt Designer's user interface can be configured to provide either a multi-window user interface (the default mode), or

TopicsSearch

Qt 5.15 Qt Designer Manual Getting to Know Qt Designer

http://doc.qt.io/qtcreator/index.html
https://doc.qt.io/qt-5/index.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/


it can be used in docked window mode. When used from within an integrated development environment (IDE) only the multi-window user interface is
available. You can switch modes in the Preferences dialog from the Edit menu.

In multi-window mode, you can arrange each of the tool windows to suit your working style. The main window consists of a menu bar, a tool bar, and a
widget box that contains the widgets you can use to create your user interface.

Qt Designer's Main Window
The menu bar provides all the standard actions for managing forms, using the clipboard, and accessing
application-specific help. The current editing mode, the tool windows, and the forms in use can also be
accessed via the menu bar.
The tool bar displays common actions that are used when editing a form. These are also available via the
main menu.
The widget box provides common widgets and layouts that are used to design components. These are
grouped into categories that reflect their uses or features.

Most features of Qt Designer are accessible via the menu bar, the tool bar, or the widget box. Some features are also available through context menus that
can be opened over the form windows. On most platforms, the right mouse is used to open context menus.

Qt Designer's Widget Box
The widget box provides a selection of standard Qt widgets, layouts, and other objects that can be used to
create user interfaces on forms. Each of the categories in the widget box contain widgets with similar uses or
related features.
You can display all of the available objects in a category by clicking on the handle next to the category label.
When in Widget Editing Mode, you can add objects to a form by dragging the appropriate items from the widget
box onto the form, and dropping them in the required locations.
Qt Designer provides a scratch pad feature that allows you to collect frequently used objects in a separate
category. The scratch pad category can be filled with any widget currently displayed in a form by dragging them
from the form and dropping them onto the widget box. These widgets can be used in the same way as any
other widgets, but they can also contain child widgets. Open a context menu over a widget to change its name
or remove it from the scratch pad.

The Concept of Layouts in Qt
A layout is used to arrange and manage the elements that make up a user interface. Qt provides a number of classes to automatically handle layouts --
QHBoxLayout, QVBoxLayout, QGridLayout, and QFormLayout. These classes solve the challenge of laying out widgets automatically, providing a user
interface that behaves predictably. Fortunately knowledge of the layout classes is not required to arrange widgets with Qt Designer. Instead, select one of the
Lay Out Horizontally, Lay Out in a Grid, etc., options from the context menu.

Each Qt widget has a recommended size, known as sizeHint(). The layout manager will attempt to resize a widget to meet its size hint. In some cases, there
is no need to have a different size. For example, the height of a QLineEdit is always a fixed value, depending on font size and style. In other cases, you may
require the size to change, e.g., the width of a QLineEdit or the width and height of item view widgets. This is where the widget size constraints --
minimumSize and maximumSize constraints come into play. These are properties you can set in the property editor. For example, to override the default
sizeHint(), simply set minimumSize and maximumSize to the same value. Alternatively, to use the current size as a size constraint value, choose one of the
Size Constraint options from the widget's context menu. The layout will then ensure that those constraints are met. To control the size of your widgets via
code, you can reimplement sizeHint() in your code.

The screenshot below shows the breakdown of a basic user interface designed using a grid. The coordinates on the screenshot show the position of each
widget within the grid.

https://doc.qt.io/qt-5/designer-widget-mode.html
https://doc.qt.io/qt-5/qhboxlayout.html
https://doc.qt.io/qt-5/qvboxlayout.html
https://doc.qt.io/qt-5/qgridlayout.html
https://doc.qt.io/qt-5/qformlayout.html
https://doc.qt.io/qt-5/qwidget.html#sizeHint-prop
https://doc.qt.io/qt-5/qlineedit.html
https://doc.qt.io/qt-5/qlineedit.html
https://doc.qt.io/qt-5/qwidget.html#minimumSize-prop
https://doc.qt.io/qt-5/qwidget.html#maximumSize-prop
https://doc.qt.io/qt-5/qwidget.html#sizeHint-prop
https://doc.qt.io/qt-5/qwidget.html#minimumSize-prop
https://doc.qt.io/qt-5/qwidget.html#maximumSize-prop
https://doc.qt.io/qt-5/qwidget.html#sizeHint-prop
https://doc.qt.io/


Note: Inside the grid, the QPushButton objects are actually nested. The buttons on the right are first placed in a QVBoxLayout; the buttons at the
bottom are first placed in a QHBoxLayout. Finally, they are put into coordinates (1,2) and (2,1) of the QGridLayout.

To visualize, imagine the layout as a box that shrinks as much as possible, attempting to squeeze your widgets in a neat arrangement, and, at the same time,
maximize the use of available space.

Qt's layouts help when you:

1. Resize the user face to fit different window sizes.

2. Resize elements within the user interface to suit different localizations.

3. Arrange elements to adhere to layout guidelines for different platforms.

So, you no longer have to worry about rearranging widgets for different platforms, settings, and languages.

The example below shows how different localizations can affect the user interface. When a localization requires more space for longer text strings the Qt
layout automatically scales to accommodate this, while ensuring that the user interface looks presentable and still matches the platform guidelines.

A Dialog in English A Dialog in French

https://doc.qt.io/qt-5/qpushbutton.html
https://doc.qt.io/qt-5/qvboxlayout.html
https://doc.qt.io/qt-5/qhboxlayout.html
https://doc.qt.io/qt-5/qgridlayout.html
https://doc.qt.io/


The process of laying out widgets consists of creating the layout hierarchy while setting as few widget size constraints as possible.

For a more technical perspective on Qt's layout classes, refer to the Layout Management documentation.

© 2022 The Qt Company Ltd.
Documentation contributions included herein are the copyrights of
their respective owners. The documentation provided herein is licensed under the terms of the GNU
Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries
worldwide.
All other trademarks are property of their respective owners.

Sign InFeedback© 2022 The Qt Company


 
 




Company

About Us
Investors
Newsroom
Careers
Office Locations

Licensing

Terms & Conditions
Open Source
FAQ

Support

Support Services
Professional Services
Partners
Training

For Customers

Support Center
Downloads
Qt Login
Contact Us
Customer Success

Community

Contribute to Qt
Forum
Wiki
Downloads
Marketplace



Contact Us

https://doc.qt.io/qt-5/layout.html
http://www.gnu.org/licenses/fdl.html
https://doc.qt.io/qt/trademarks.html
https://account.qt.io/login
mailto:feedback@qt.io?Subject=Feedback%20about%20doc.qt.io%20site
https://www.qt.io/about-us?hsLang=en
https://www.facebook.com/qt/
https://twitter.com/qtproject
https://www.youtube.com/user/QtStudios
https://www.linkedin.com/company/theqtcompany/
javascript:;
https://www.qt.io/company
https://investors.qt.io/
https://www.qt.io/newsroom
https://www.qt.io/careers
https://www.qt.io/contact-us/qt-offices
javascript:;
https://www.qt.io/terms-conditions/
https://www.qt.io/licensing/open-source-lgpl-obligations
https://www.qt.io/faq/overview
javascript:;
https://www.qt.io/qt-support/
https://www.qt.io/qt-consulting/
https://www.qt.io/contact-us/partners
https://www.qt.io/qt-training/
javascript:;
https://account.qt.io/support
https://account.qt.io/downloads
https://login.qt.io/login
https://www.qt.io/contact-us
https://www.qt.io/customer-success
javascript:;
https://www.qt.io/community/contribute-to-qt
https://forum.qt.io/
https://wiki.qt.io/Main
https://www.qt.io/download
https://marketplace.qt.io/
https://doc.qt.io/?hsLang=en
https://www.qt.io/contact-us?hsLang=en
https://doc.qt.io/

