# /ANIM/SHELL/DAMA

Engine Keyword Generates animation files containing a damage value for each layer of a shell element. The damage value is the maximum of damage over time of all failure criteria associated to the material.

## Format

/ANIM/SHELL/DAMA/Keyword4/Keyword5

## Definition

Field Contents SI Unit Example
Keyword4 Output location:
N
Layer number N
UPPER
Upper layer
LOWER
Lower layer (number of integration point is equal to one)
ALL
All the layers

Keyword5 Result type or location:
NIP
Number of integration points through layer N 5
UPPER
Upper integration point (through NIP) of the upper layer N
LOWER
Lower integration point (through NIP) of the lower layer N
ALL
All the integration points (NIP) through the layer N

1. In case of BATOZ shell element, the value is the average value of the Gauss points in the layer.

This applies only to failure criteria defined with Failure Models keywords, failure defined inside material laws (/MAT/LAW52 (GURSON)) is currently not available.

2. The damage value, D is the maximum value of all failure criteria of the model.

The damage value, which is displayed, is the maximum damage value over time.

In case of composite shell element property TYPE51, the damage value for one layer is computed as the maximum value over the all integration points of its layer.(1)
$D\left(T\right)={\mathrm{max}}_{t\le T}\left(D\left(t\right)\right)$
3. The damage value, D is 0 ≤ D ≤ 1. The status for fracture is:

Free, if 0 ≤ D < 1

Failure, if D = 1

4. D is computed for every failure criteria as follows:
$D=\sum \frac{\text{Δ}{\epsilon }_{p}}{{\epsilon }_{f}}$
• Johnson-Cook failure (/FAIL/JOHNSON) (3)
$D=\sum \frac{\mathrm{\text{Δ}}{\varepsilon }_{p}}{{\varepsilon }_{f}}$
• Tuler-Butcher failure (/FAIL/TBUTCHER) (4)
$D=\frac{{\underset{0}{\overset{t}{\int }}\left(\sigma -{\sigma }_{r}\right)}^{\lambda }dt}{K}$
• Wilkins failure (/FAIL/WILKINS)(5)
$D=\frac{\int {W}_{1}{W}_{2}d{\epsilon }_{p}}{{D}_{f}}$
• FLD failure (/FAIL/FLD) (6)
$D=\underset{time}{Max}\left(\frac{{\epsilon }_{major}}{{\epsilon }_{\mathrm{lim}}}\right)$
Where,
${\epsilon }_{\mathrm{lim}}$
Major strain as limit from FLD function
• BAO-XUE-Wierzbicki failure (/FAIL/WIERZBICKI)(7)
$D=\sum \frac{\text{Δ}{\epsilon }_{p}}{{\overline{\epsilon }}_{f}}$
• Strain failure model (/FAIL/TENSSTRAIN)(8)
$D=\underset{\mathit{time}}{\mathit{Max}}\left(\frac{{\varepsilon }_{1}-{\varepsilon }_{{t}_{1}}}{{\varepsilon }_{{t}_{2}}-{\varepsilon }_{{t}_{1}}}\right)$
• Strain failure model (/FAIL/FABRIC)(9)
$D=Max\left(\frac{{\epsilon }_{1}-{\epsilon }_{f1}}{{\epsilon }_{r1}-{\epsilon }_{f1}},\frac{{\epsilon }_{2}-{\epsilon }_{f2}}{{\epsilon }_{r2}-{\epsilon }_{f2}}\right)$
• Energy density failure model (/FAIL/ENERGY):(10)
$D=\underset{\mathit{time}}{\mathit{Max}}\left(\frac{E-{E}_{1}}{{E}_{2}-{E}_{1}}\right)$
• Chang failure (/FAIL/CHANG)
The maximum damage for different failure mode: (11)
$D=\mathit{Max}\left({e}_{f}{}^{2},{e}_{c}{}^{2},{e}_{m}{}^{2},{e}_{d}{}^{2}\right)$
• Hashin Composite failure (/FAIL/HASHIN)

The maximum damage for different failure mode

For uni-directional lamina model:(12)
$D=Max\left({F}_{1},{F}_{2},{F}_{3},{F}_{4},{F}_{5}\right)$
For fabric lamina model:(13)
$D=Max\left({F}_{1},{F}_{2},{F}_{3},{F}_{4},{F}_{5},{F}_{6},{F}_{7}\right)$
• Puck Composite failure (/FAIL/PUCK)
The maximum damage for different failure mode:(14)
$D=\mathit{Max}\left({e}_{f}\left(\mathit{tensile}\right),{e}_{f}\left(\mathit{compression}\right),{e}_{f}\left(\mathit{ModeA}\right),{e}_{f}\left(\mathit{ModeB}\right),{e}_{f}\left(\mathit{ModeC}\right)\right)$
$\stackrel{˙}{d}=\frac{k}{a}\left[1-\mathrm{exp}\left(-a〈w\left(Y\right)-d〉\right)\right]$
$D=\frac{\sum \mathrm{\text{Δ}}D}{{D}_{crit}}$
$D=\frac{{\lambda }_{f}}{2}$
$D=\sum \frac{\text{Δ}{\overline{\epsilon }}_{p}}{{\overline{\epsilon }}_{HC}^{pr}\left(\eta \right)}$