RD-E: 2203 Ditching Multi-Domain

The Multi-Domain method is applied to ALE and SPH Fluid-Structure Interaction (FSI) ditching problems to demonstrate the computational speedup, accuracy, and ease of use.

Options and Keywords Used

Input Files

Before you begin, copy the file(s) used in this example to your working directory.

Model Description

Unit: mm, ms, KN, GPa, kg

The Multi-Domain method is used to optimize the computing performance of large Radioss models that can be sub-divided into distinct subdomains with clearly defined interfaces/connections between them and those different subdomains should be characterized by different mesh sizes and consequently very different minimal time step. The RD-E: 2201 ALE and RD-E: 2202 SPH ditching models are used to demonstrate a multi-domain setup. To make a larger time step difference between the Lagrangian impacting prism object and the fluid, the prism rigid body was updated so only the top edge of the prism is rigid and the rest of the prism is deformable. This results in a lower time step for the Lagrangian structure.

Model Method of Multi-Domain (Single Input Format)

To set up a Multi-Domain analysis, the following modifications to the Mono-Domain model are needed.
  1. In the Starter, use /SUBDOMAIN to define a sub-domain.
    In this example, part ID 19 is defined as a sub-domain.


    Figure 1.
    Note: The subdomain_title “prism_subdomain” is the prefix used in the sub-domain Engine name prism_subdomain_0001.rad.

    ex_22-3_sph_ale
    Figure 2. Domain Description in Multi-Domain Approach
  2. Setup the two Engine files:
    • First Engine file (main-domain):
      • Using the Engine file from the Mono-Domain model add the /RAD2RAD/ON keyword.
    • Second Engine file (sub-domain):
      • Copy the Engine file from the Mono-Domain simulation and rename it, so the prefix of the Engine file matches the title from the /SUBDOMAIN Starter option.

        In this example the sub-domain Engine is prism_subdomain_0001.rad.

      • Add the /RAD2RAD/ON keyword.
      • Update the run name in /RUN, so it matches the prefix of the sub-domain Engine file. /RUN/prism_subdomain/1.
      • Define the Lagrange parts (part ID 19) time step control.

        In this case, /DT/NODA is used.

Results

Since the Multi-Domain models used a prism that was deformable, the results cannot be directly compared to the results from RD-E: 2201 ALE and RD-E: 2202 SPH ditching models. Therefore, the Multi-Domain models were rerun as Mono-Domain to obtain results for the comparison.

The acceleration results are filtered using a CFC 60 (-3db) filter and then compared between the Mono-Domain and Multi-Domain models.

ex_22-3_acceleration_comparison
Figure 3. Comparison between Mono-Domain and Multi-Domain
The time step in Multi-Domain is bigger than in Mono-Domain.
  • Time step

    ex_22-3_time_step_comparison
    Figure 4. Comparison between Mono-Domain and Multi-Domain
Theoretical speedup α formula: (1) α= T Mono T Multi = N e Fluid C Fluid N c Struct +N e Struct C Struct N c Struct N e Fluid C Fluid N c Fluid +N e Struct C Struct N c Struct MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabg7acqGH9aqpdaWcaaWdaeaapeGaamiva8aadaWgaaWcbaWd biaad2eacaWGVbGaamOBaiaad+gaa8aabeaaaOqaa8qacaWGubWdam aaBaaaleaapeGaamytaiaadwhacaWGSbGaamiDaiaadMgaa8aabeaa aaGcpeGaeyypa0ZaaSaaa8aabaWdbiaad6eacaWGLbWdamaaBaaale aapeGaamOraiaadYgacaWG1bGaamyAaiaadsgaa8aabeaak8qacqGH flY1caWGdbWdamaaBaaaleaapeGaamOraiaadYgacaWG1bGaamyAai aadsgaa8aabeaak8qacqGHflY1caWGobGaam4ya8aadaWgaaWcbaWd biaadofacaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWdaeqaaOWdbi abgUcaRiaad6eacaWGLbWdamaaBaaaleaapeGaam4uaiaadshacaWG YbGaamyDaiaadogacaWG0baapaqabaGcpeGaeyyXICTaam4qa8aada WgaaWcbaWdbiaadofacaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWd aeqaaOWdbiabgwSixlaad6eacaWGJbWdamaaBaaaleaapeGaam4uai aadshacaWGYbGaamyDaiaadogacaWG0baapaqabaaakeaapeGaamOt aiaadwgapaWaaSbaaSqaa8qacaWGgbGaamiBaiaadwhacaWGPbGaam izaaWdaeqaaOWdbiabgwSixlaadoeapaWaaSbaaSqaa8qacaWGgbGa amiBaiaadwhacaWGPbGaamizaaWdaeqaaOWdbiabgwSixlaad6eaca WGJbWdamaaBaaaleaapeGaamOraiaadYgacaWG1bGaamyAaiaadsga a8aabeaak8qacqGHRaWkcaWGobGaamyza8aadaWgaaWcbaWdbiaado facaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWdaeqaaOWdbiabgwSi xlaadoeapaWaaSbaaSqaa8qacaWGtbGaamiDaiaadkhacaWG1bGaam 4yaiaadshaa8aabeaak8qacqGHflY1caWGobGaam4ya8aadaWgaaWc baWdbiaadofacaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWdaeqaaa aaaaa@ADAB@
Speedup α could also be formulated with following factors.
  • Relative element number:(2) ψ = N e S t r u c t N e S t r u c t + N e F l u i d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKNaeyypa0ZaaSaaa8aabaWdbiaad6eacaWGLbWdamaaBaaa leaapeGaam4uaiaadshacaWGYbGaamyDaiaadogacaWG0baapaqaba aakeaapeGaamOtaiaadwgapaWaaSbaaSqaa8qacaWGtbGaamiDaiaa dkhacaWG1bGaam4yaiaadshaa8aabeaak8qacqGHRaWkcaWGobGaam yza8aadaWgaaWcbaWdbiaadAeacaWGSbGaamyDaiaadMgacaWGKbaa paqabaaaaaaa@503D@
  • Relative time step (relative cycle numbers):(3) γ = d t S t r u c t d t F l u i d = N c F l u i d N c S t r u c t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Sdiabg2da9maalaaapaqaa8qacaWGKbGaamiDa8aadaWgaaWc baWdbiaadofacaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWdaeqaaa GcbaWdbiaadsgacaWG0bWdamaaBaaaleaapeGaamOraiaadYgacaWG 1bGaamyAaiaadsgaa8aabeaaaaGcpeGaeyypa0ZaaSaaa8aabaWdbi aad6eacaWGJbWdamaaBaaaleaapeGaamOraiaadYgacaWG1bGaamyA aiaadsgaa8aabeaaaOqaa8qacaWGobGaam4ya8aadaWgaaWcbaWdbi aadofacaWG0bGaamOCaiaadwhacaWGJbGaamiDaaWdaeqaaaaaaaa@56FF@

    with d t being time step.

  • Relative cost per cycle:(4) ξ = C F l u i d C S t r u c t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyypa0ZaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qa caWGgbGaamiBaiaadwhacaWGPbGaamizaaWdaeqaaaGcbaWdbiaado eapaWaaSbaaSqaa8qacaWGtbGaamiDaiaadkhacaWG1bGaam4yaiaa dshaa8aabeaaaaaaaa@4592@
    Lagrange shell
    = 1
    Lagrange solid
    ~ 3
    ALE solid
    ~ 6
    SPH cell
    ~ 15
    Speedup α will then be:(5) α= ξ+( 1ξ )ψ ξγ+( 1ξγ )ψ = elapsed time in MonoDomain elapsed time in MultiDomain MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabg7acqGH9aqpdaWcaaWdaeaapeGaeqOVdGNaey4kaSYaaeWa a8aabaWdbiaaigdacqGHsislcqaH+oaEaiaawIcacaGLPaaacqGHfl Y1cqaHipqEa8aabaWdbiabe67a4jabgwSixlabeo7aNjabgUcaRmaa bmaapaqaa8qacaaIXaGaeyOeI0IaeqOVdGNaeyyXICTaeq4SdCgaca GLOaGaayzkaaGaeyyXICTaeqiYdKhaaiabg2da9maalaaapaqaa8qa caWGLbGaamiBaiaadggacaWGWbGaam4CaiaadwgacaWGKbGaaGPaVx aabeqabeaaaeaaaaGaamiDaiaadMgacaWGTbGaamyzaiaaykW7caaM c8EbaeqabeqaaaqaaaaacaWGPbGaamOBaiaaykW7faqabeqabaaaba aaaiaaykW7caWGnbGaam4Baiaad6gacaWGVbGaamiraiaad+gacaWG TbGaamyyaiaadMgacaWGUbaapaqaa8qacaWGLbGaamiBaiaadggaca WGWbGaam4CaiaadwgacaWGKbGaaGPaVxaabeqabeaaaeaaaaGaamiD aiaadMgacaWGTbGaamyzauaabeqabeaaaeaacaaMc8oaaiaaykW7ca WGPbGaamOBaiaaykW7faqabeqabaaabaaaaiaaykW7caWGnbGaamyD aiaadYgacaWG0bGaamyAaiaadseacaWGVbGaamyBaiaadggacaWGPb GaamOBaaaaaaa@9516@
  • Elapsed times:

    ex_22-3_elapsed_ale
    Figure 5. ALE Ditching

    ex_22-3_elapsed_sph
    Figure 6. SPH Ditching

The Multi-Domain FSI speedup ranges from 6 times to 9 times of the Mono-Domain depending on the number of cores used in the simulation.

Conclusion

  • For Multi-Domain with ALE or SPH, there is no need to minimize the contact interfaces between fluid and structure.
  • For Multi-Domain FSI, it is advised to use have the fluid in the main domain and defined /DT/ALE with an elementary free time step with a scaling factor of 0.5 for ALE. In the Lagrange subdomain, a nodal time step /DT/NODA with a scaling factor of 0.9 should be used.
  • When Lagrange parts are assembled using tied contact interface TYPE2 improved speed-up is obtained using Spotflag = 27 to switch from kinematic to penalty formulation to solve the problem.