# /EBCS/VALVIN

Block Format Keyword Describes the elementary boundary condition to describe inlet valve (imposed density and pressure).

## Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/EBCS/VALVIN/ebcs_ID/unit_ID
ebcs_title
surf_ID
C
fct_IDpr Fscalepr
fct_IDrho Fscalerho
fct_IDen Fscaleen
lc r1 r2

## Definition

Field Contents SI Unit Example
ebcs_ID Elementary boundary condition identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier

(Integer, maximum 10 digits)

ebcs_title Elementary boundary condition title.

(Character, maximum 100 characters)

surf_ID Surface identifier.

(Integer)

C Speed of sound.

Default = 0 (Real)

$\left[\frac{\text{m}}{\text{s}}\right]$
fct_IDpr Function ${\mathrm{f}}_{pr}\left(t\right)$ identifier for pressure.
= 0
$P=Fscal{e}_{pr}$
= n
$P=Fscal{e}_{pr}\cdot {\mathrm{f}}_{pr}\left(t\right)$

(Integer)

Fscalepr Pressure scale factor.

Default = 0 (Real)

$\left[\text{Pa}\right]$
fct_IDrho Function ${\mathrm{f}}_{rho}\left(t\right)$ identifier for density.
= 0
$\rho =Fscal{e}_{rho}$
= n
$\rho =Fscal{e}_{rho}\cdot {\mathrm{f}}_{rho}\left(t\right)$

(Integer)

Fscalerho Density scale factor.

Default = 0 (Real)

$\left[\frac{\text{kg}}{{\text{m}}^{3}}\right]$
fct_IDen Function ${\mathrm{f}}_{en}\left(t\right)$ identifier for energy.
= 0
$E=Fscal{e}_{en}$
= n
$E=Fscal{e}_{en}\cdot {\mathrm{f}}_{en}\left(t\right)$

(Integer)

Fscaleen Energy scale factor.

Default = 0 (Real)

$\left[\text{J}\right]$
${l}_{c}$ Characteristic length.

Default = 0 (Real)

$\left[\text{m}\right]$
r1 Linear resistance. 5

Default = 0 (Real)

$\left[\frac{\text{kg}}{{\text{m}}^{2}\text{s}}\right]$

Default = 0 (Real)

$\left[\frac{\text{kg}}{{\text{m}}^{3}}\right]$

1. Input is general, no prior assumptions are enforced! Verify that the elementary boundaries are consistent with general assumptions of ALE (equation closure).
2. It is not advised to use the Hydrodynamic Bi-material Liquid Gas Law (/MAT/LAW37 (BIPHAS)) with the elementary boundary conditions.
3. Density, pressure, and energy are imposed according to a scale factor and a time function. If the function number is 0, the imposed density, pressure and energy are used.
4. This keyword is less than four or equal to six (non-reflective frontiers (NRF)) using:
(1)
$\frac{\partial P}{\partial t}=\rho c\frac{\partial {V}_{n}}{\partial t}+c\frac{\left({P}_{\infty }-P\right)}{{l}_{c}}$

Pressure in the far field ${P}_{\infty }$ is imposed with a function of time. The transient pressure is derived from ${P}_{\infty }$ , the local velocity field V and the normal of the outlet facet.

Where, ${l}_{c}$ is the characteristic length, to compute cutoff frequency ${f}_{c}$ as:(2)
${f}_{c}=\frac{c}{2\pi .{l}_{c}}$
5. A resistance pressure is computed and added to the current pressure.(3)
${P}_{res}={r}_{1}\cdot {V}_{n}+{r}_{2}\cdot {V}_{n}\cdot |{V}_{n}|$

It aims at modeling the friction loss due to the valves.