/FAIL/GENE1

Block Format Keyword Multiple failure models with different combinations with strain rate, thermal or mesh size dependency.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/GENE1/mat_ID/unit_ID
Pmin Pmax SigP1_max Time_max dtmin
fct_IDsm   Eps_dot_sm Sig_max Sigr K
fct_IDps   Eps_dot_ps Eps_max Eps_eff Eps_vol
Eps_min Shear fct_IDg12 fct_IDg13 fct_IDe1c      
tab_IDfld Itab Eps_dot_fld Nstep Ismooth Istrain   Thinning
Volfrac P_thickfail NCS   Tmax    
fct_IDel   Fscaleel El_ref    
Optional line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

Pmin Minimum pressure (positive in compression).

(Real)

[ Pa ]
Pmax Maximum pressure (positive in compression).

(Real)

[ Pa ]
SigP1_max Maximum principal stress.

(Real)

[ Pa ]
Time_max Failure time.

Default = 1E+20 (Real)

[ s ]
dtmin Minimum time step.

(Real)

[ s ]
fct_IDsm Function identifier of the maximum equivalent stress versus strain rate.

(Integer)

Eps_dot_sm Reference strain rate value for fct_IDsm

Default = 1 (Real)

[ 1 s ]
Sig_max Ordinate scale factor for fct_IDsm or maximum equivalent stress if fct_IDsm is not defined.

Default = 1, if fct_IDsm is defined (Real)

[ Pa ]
Sigr Initial fracture stress for Tuler-Butcher criterion.

(Real)

[ Pa ]
K Critical value of the damage integral for Tuler-Butcher criterion.

(Real)

[ P a 2 s ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGqbGaamyyamaaCaaaleqabaGaaGOmaaaakiabgwSixlaadohaaiaa wUfacaGLDbaaaaa@3DD9@
fct_IDps Maximum principal strain versus strain rate function identifier.

(Integer)

Eps_dot_ps Reference strain rate value for fct_IDps.

Default = 1 (Real)

[ 1 s ]
Eps_max Ordinate scale factor for fct_IDps or maximum principal strain if fct_IDps is not defined.

Default = 1, if fct_IDps is defined (Real)

Eps_eff Maximum effective strain.

(Real)

Eps_vol Maximum volumetric strain.

(Real)

Eps_min Minimum principal strain.

(Real)

Shear Tensorial shear strain ( γ max 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHZoWzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaaikda aaaaaa@3B73@ ).

Where, γ max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3A9D@ is the engineering shear strain at failure.

(Real)

fct_IDg12 Maximum in-plane shear strain γ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3941@ versus element size function identifier.

(Real)

fct_IDg13 Maximum transversal shear strain γ 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@3941@ versus element size function identifier.

(Real)

fct_IDe1c Maximum in-plane major strain ε 1 c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaaigdaaeaacaWGJbaaaaaa@396E@ versus element size function identifier.

(Real)

tab_IDfld Table or function identifier of the Forming Limit Diagram.

(Integer)

Itab Table dependency type (used only if tab_IDfld is a table).
= 1 (Default)
Table is the Forming Limit Diagram versus strain rate.
= 2
Table is the Forming Limit Diagram versus element size.

(Integer)

Eps_dot_fld Reference strain rate value for tab_IDfld.

Default = 1 (Real)

[ 1 s ]
Nstep Number of cycles for the stress reduction.

Default = 10 (Integer)

Ismooth Interpolation type (in case of tabulated yield function).
= 1 (Default)
Linear interpolation.
= 2
Logarithmic interpolation base 10.
= 3
Logarithmic interpolation base n.

(Integer)

Istrain Engineering / True input strain flag.
= 0 (Default)
FLD curve defined in terms of true strain.
= 1
FLD curve defined in terms of engineering strain.

(Integer)

Thinning Thinning failure value.

(Real)

Volfrac

Damaged volume fraction to reach before the element is deleted (fully-integrated and higher order elements only).

Default = 0.5 (Real)

P_thickfail Ratio of through thickness integration points that must fail before the under-integrated element is deleted.

0.0≤ P_thickfail ≤1.0

Default = 1.0 (Real)

NCS Number of conditions to reach before the element is deleted.

Default = 1 (Integer)

Tmax Maximum temperature.

(Real)

[ K ]
fct_IDel Element size scale factor function identifier for the criterias Pmin, Pmax, SigP1_max, Sig_max, Sigr, K, EpsPS_max, Eps_eff, Eps_vol, Eps_min, Shear, tab_IDfld and Thinning.

(Integer)

Fscaleel Element size function scale factor for fct_IDel, tab_IDfld (Itab=2), fct_IDg12, fct_IDg23, fct_IDg13 and fct_IDe1c.

Default = 1.0 (Real)

El_ref Reference element size for fct_IDel, tab_IDfld (Itab=2), fct_IDg12, fct_IDg23, fct_IDg13 and fct_IDe1c.

Default = 1.0 (Real)

[ m ]
fail_ID (Optional) Failure criteria identifier.

Comments

  1. Failure criteria is used only if the value is different from 0.
  2. Failure models including:
    • Minimum hydrostatic pressure based failure criteria:

      P | P min | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgs MiJkabgkHiTmaaemaabaGaamiuamaaBaaaleaaciGGTbGaaiyAaiaa c6gaaeqaaaGccaGLhWUaayjcSdaaaa@406D@

    • Maximum hydrostatic pressure based failure criteria:

      P | P max | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgw MiZoaaemaabaGaamiuamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqa aaGccaGLhWUaayjcSdaaaa@3F93@

      Where, hydrostatic pressure is computed as:

      P = σ x x + σ y y + σ z z 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 da9iabgkHiTmaalaaabaGaeq4Wdm3aaSbaaSqaaiaadIhacaWG4baa beaakiabgUcaRiabeo8aZnaaBaaaleaacaWG5bGaamyEaaqabaGccq GHRaWkcqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaGcbaGaaG4m aaaaaaa@472F@

      Note: Hydrostatic pressure is positive in compression.
    • Maximum principal stress:

      σ1SigP1_max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ymaiabgwMiZcbaaaaaaaaapeGaae4uaiaabMgacaqGNbGaaeiuaiaa bgdacaqGFbGaaeyBaiaabggacaqG4baaaa@4241@

    • Maximum time ≥ Time_max
    • Minimum elementary time step ≤ dtmin (not available with /DT/NODA option).
    • Equivalent stress:

      σ eq Sig_maxfct_I D sm ( ε ˙ ε ˙ sm ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaakiabgwMiZcbaaaaaaaaapeGaam4u aiaadMgacaWGNbGaai4xaiaad2gacaWGHbGaamiEa8aacqGHflY1ca WGMbGaam4yaiaadshacaGGFbGaamysaiaadseadaWgaaWcbaGaam4C aiaad2gaaeqaaOWaaeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafq yTduMbaiaadaWgaaWcbaGaam4Caiaad2gaaeqaaaaaaOGaayjkaiaa wMcaaaaa@52F7@

    • Tuler-Butcher model:

      0 t [ max( 0,σ1Sigr ) ] 2 dtK MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WadaqaaiGac2gacaGGHbGaaiiEamaabmaabaGaaGimaiaacYcacqaH dpWCcaaIXaGaeyOeI0Iaam4uaiaadMgacaWGNbGaamOCaaGaayjkai aawMcaaaGaay5waiaaw2faaaWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakmaaCaaaleqabaGaaGOmaaaakiaadsgacaWG0bGaeyyzImRaam 4saaaa@4E17@

      Where, σ1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG ymaaaa@3877@ is the principal stress.

    • Maximum principal strain:

      ε1EpsPS_maxfct_I D ps ( ε ˙ ε ˙ ps ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ymaiabgwMiZcbaaaaaaaaapeGaamyraiaadchacaWGZbGaamiuaiaa dofacaGGFbGaamyBaiaadggacaWG4bWdaiabgwSixlaadAgacaWGJb GaamiDaiaac+facaWGjbGaamiramaaBaaaleaacaWGWbGaam4Caaqa baGcdaqadaqaamaalaaabaGafqyTduMbaiaaaeaacuaH1oqzgaGaam aaBaaaleaacaWGWbGaam4CaaqabaaaaaGccaGLOaGaayzkaaaaaa@5338@

    • Effective strain:

      2 3 ε i j ' ε i j ' E p s _ e f f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaada WcaaqaaiaaikdaaeaacaaIZaaaaaWcbeaakiabew7aLnaaDaaaleaa caWGPbGaamOAaaqaaiaacEcaaaGccqaH1oqzdaqhaaWcbaGaamyAai aadQgaaeaacaGGNaaaaOGaeyyzImleaaaaaaaaa8qacaWGfbGaamiC aiaadohacaGGFbGaamyzaiaadAgacaWGMbaaaa@48B0@

      Where, ε i j ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGQbaabaGaai4jaaaaaaa@3A52@ is the deviatoric strain.

    • Volumetric strain:

      ε vol = ε 11 + ε 22 + ε 33 Eps_vol MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadAhacaWGVbGaamiBaaqabaGccqGH9aqpcqaH1oqzdaWg aaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaai aaikdacaaIYaaabeaakiabgUcaRiabew7aLnaaBaaaleaacaaIZaGa aG4maaqabaGccqGHLjYSqaaaaaaaaaWdbiaadweacaWGWbGaam4Cai aac+facaWG2bGaam4BaiaadYgaaaa@4FDF@

    • Minimum principal strain:

      ε 3 | Eps_min | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaiodaaeqaaOGaeyizImQaeyOeI0YaaqWaaeaaqaaaaaaa aaWdbiaadweacaWGWbGaam4Caiaac+facaWGTbGaamyAaiaad6gaa8 aacaGLhWUaayjcSdaaaa@44F3@

    • Maximum tensorial shear strain:

      γ 1 = ( ε 1 ε 3 ) 2 Shear MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiabew7a LnaaBaaaleaacaaIXaaabeaakiabgkHiTiabew7aLnaaBaaaleaaca aIZaaabeaaaOGaayjkaiaawMcaaaqaaiaaikdaaaGaeyyzImleaaaa aaaaa8qacaWGtbGaamiAaiaadwgacaWGHbGaamOCaaaa@487C@

    • Mixed-mode fracture criterion:
      • γ 12 = ( ε 1 ε 2 ) 2 fct_I D g12 ( Siz e el El_ref ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIYaaabeaakiabg2da9maalaaabaWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH1oqzdaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiabgwMi ZcbaaaaaaaaapeGaamOzaiaadogacaWG0bGaai4xaiaadMeacaWGeb WdamaaBaaaleaapeGaam4zaiaaigdacaaIYaaapaqabaGcdaqadaqa amaalaaabaGaam4uaiaadMgacaWG6bGaamyzamaaBaaaleaacaWGLb GaamiBaaqabaaakeaacaWGfbGaamiBaiaac+facaWGYbGaamyzaiaa dAgaaaaacaGLOaGaayzkaaaaaa@597C@ if 2( ε 2 ε 1 )0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiabgsMiJoaabmaabaWaaSaaaeaacqaH1oqzdaWgaaWcbaGaaGOm aaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqabaaaaaGccaGLOa GaayzkaaGaeyizImQaeyOeI0IaaGimaiaac6cacaaI1aaaaa@44EE@
      • γ 13 = ( ε 1 ε 3 ) 2 fct_I D g13 ( Siz e el El_ref ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaIZaaabeaakiabg2da9maalaaabaWaaeWaaeaa cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH1oqzdaWgaa WcbaGaaG4maaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiabgwMi ZcbaaaaaaaaapeGaamOzaiaadogacaWG0bGaai4xaiaadMeacaWGeb WdamaaBaaaleaapeGaam4zaiaaigdacaaIZaaapaqabaGcdaqadaqa amaalaaabaGaam4uaiaadMgacaWG6bGaamyzamaaBaaaleaacaWGLb GaamiBaaqabaaakeaacaWGfbGaamiBaiaac+facaWGYbGaamyzaiaa dAgaaaaacaGLOaGaayzkaaaaaa@597F@ if 0.5( ε 2 ε 1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG imaiaac6cacaaI1aGaeyizIm6aaeWaaeaadaWcaaqaaiabew7aLnaa BaaaleaacaaIYaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIXaaabe aaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4400@
      • ε 1 f c t _ I D e 1 c ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaeyyzImleaaaaaaaaa8qacaWGMbGaam4y aiaadshacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGLbGaaG ymaiaadogaa8aabeaakmaabmaabaWaaSaaaeaacaWGtbGaamyAaiaa dQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaOqaaiaadweaca WGSbGaai4xaiaadkhacaWGLbGaamOzaaaaaiaawIcacaGLPaaaaaa@4F71@ if 0.5 ( ε 2 ε 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG imaiaac6cacaaI1aGaeyizIm6aaeWaaeaadaWcaaqaaiabew7aLnaa BaaaleaacaaIYaaabeaaaOqaaiabew7aLnaaBaaaleaacaaIXaaabe aaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4400@
        Where,
        ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@ and ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        In-plane major and minor strains
        ε 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        Through thickness strain
        S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@
        Characteristic element size
    • Forming Limit Diagram (FLD):
      • If Itab=1: ( ε 1 , ε 2 ) T a b _ I D f l d ( ε ˙ E p s _ d o t _ f l d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabew 7aLnaaBaaaleaacaaIXaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaGGPaGaeyyzImleaaaaaaaaa8qacaWGubGaamyyai aadkgacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGMbGaamiB aiaadsgaa8aabeaakiaacIcadaWcaaqaaiqbew7aLzaacaaabaWdbi aadweacaWGWbGaam4Caiaac+facaWGKbGaam4BaiaadshacaGGFbGa amOzaiaadYgacaWGKbaaa8aacaGGPaaaaa@54B2@
      • If Itab=2: ( ε 1 , ε 2 ) T a b _ I D f l d ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabew 7aLnaaBaaaleaacaaIXaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaGGPaGaeyyzImleaaaaaaaaa8qacaWGubGaamyyai aadkgacaGGFbGaamysaiaadseapaWaaSbaaSqaa8qacaWGMbGaamiB aiaadsgaa8aabeaakiaacIcadaWcaaqaaiaadofacaWGPbGaamOEai aadwgadaWgaaWcbaGaamyzaiaadYgaaeqaaaGcbaWdbiaadweacaWG SbGaai4xaiaadkhacaWGLbGaamOzaaaapaGaaiykaaaa@5414@
        Where,
        ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@ and ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3887@
        In-plane major and minor strains
        S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@
        Characteristic element size
    • The stresses are reduced during Nstep cycles before the element deletion
    • Minimum thinning based criterion:
      • if Thinning > 0, shell element is deleted, if the thickness integration point thinning ≤ -|Thinning|,
      • if Thinning < 0, shell element is deleted, if the average thickness thinning ≤ -|Thinning|.
      • For solids, element is deleted, if ε z z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQhacaWG6baabeaaaaa@39CA@ ≤ -|Thinning|.
    • Maximum element temperature ≥ Tmax
  3. Volfrac is used for fully-integrated and higher order solids and shells. It represents the damaged volume fraction (for example, the sum of damaged integration points of associated volumes) value to reach to trigger the element deletion.
  4. For under-integrated linear shell elements, deletion is based on the value of P_thickfail. If P_thickfail > 0, the element fails and is deleted when the ratio of through thickness failed integration points equals or exceeds P_thickfail. P_thickfail defined in the failure model overwrite the value defined in the shell property.
  5. The integration point failure begins when NCS conditions are reached. Then the stresses in the integration points are reduced to zero in Nstep cycles.
  6. Element size dependency using the following factors:(1)
    f a c t o r e l = F s c a l e e l f c t _ I D e l ( S i z e e l E l _ r e f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaam yyaiaadogacaWG0bGaam4BaiaadkhadaWgaaWcbaGaamyzaiaadYga aeqaaOGaeyypa0JaamOraiaadohacaWGJbGaamyyaiaadYgacaWGLb WaaSbaaSqaaiaadwgacaWGSbaabeaakiabgwSixdbaaaaaaaaapeGa amOzaiaadogacaWG0bGaai4xaiaadMeacaWGebWdamaaBaaaleaape GaamyzaiaadYgaa8aabeaakmaabmaabaWaaSaaaeaacaWGtbGaamyA aiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaOqaaiaadw eacaWGSbGaai4xaiaadkhacaWGLbGaamOzaaaaaiaawIcacaGLPaaa aaa@5D41@

    Where, S i z e e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaam yAaiaadQhacaWGLbWaaSbaaSqaaiaadwgacaWGSbaabeaaaaa@3D1E@ is the characteristic element size.

  7. For post-processing results in ANIM of H3D files, you can use the variable field DAMA. For /FAIL/GENE1, the damage variable is computed with the following ratio.(2)
    D = N c r i t N C S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaamOtaiaadogacaWGYbGaamyAaiaadshaaeaacaWG obGaam4qaiaadofaaaaaaa@3EE2@
    Where,
    N c r i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@
    Number of specified criteria reached by the integration point.
    N C S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@
    Number of criteria to reach to trigger integration point failure.
    For instance, if 3 criteria are specified in the input and NCS = 3, if an integration point reaches 2 of them, its damage variable value will be D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaado gacaWGYbGaamyAaiaadshaaaa@3A90@ = 0.667.