/MAT/LAW100 (MNF)
Block Format Keyword The multi network framework or MNF is used to model polymers and elastomers with nonlinear viscous behavior.
It consists of having a specific number of networks with an elastic component and an optional flow component. This law is only compatible with solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW100/mat_ID/unit_ID or /MAT/MNF/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
N_net | Flag_HE | Flag_Cr |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
C10 | C01 | C20 | C11 | C02 | |||||
C30 | C21 | C12 | C03 | ||||||
D1 | D2 | D3 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
D | |||||||||
Itype | fct_IDAB | FscaleAB |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
C10 | D1 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
C10 | C01 | D1 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
C10 | C20 | C30 | D1 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDSM | fct_IDBM | FscaleSM | FscaleBM |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
networkID | Flag_visc | stiffness |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
A1 | C | M | Tau_ref |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
A2 | B | n2 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
A3 | n3 | M3 |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial density. (Real) |
||
N_net | Total number of secondary networks. (Integer) |
|
Flag_HE | Hyperelastic model flag.
(Integer) |
|
Flag_Cr | Creep in equilibrium network flag.
(Integer) |
|
Flag_visc | Viscous model flag.
(Integer) |
|
C10 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C01 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C20 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C11 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C02 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C30 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C21 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C12 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
C03 | Material parameter for hyperelastic model. Default = 0.0 (Real) |
|
D1 | Volumetric
material parameter 1, used for bulk modulus computation. Default = 0.0 (Real) |
|
D2 | Volumetric
material parameter 2. Default = 0.0 (Real) |
|
D3 | Volumetric material parameter 3. Default = 0.0 (Real) |
|
Shear modulus. (Real) |
||
D | Material parameter for bulk modulus computation
. Default =1030 (Real) |
|
The
limit of stretch. Default = 7.0 (Real) |
||
Itype | Test
data type (stress strain curve).
(Integer) |
|
fct_IDAB | Function
identifier defining engineer stress versus engineer strain for the Arruda-Boyce material
model. (Integer) |
|
Poisson
ratio. (Real) |
||
FscaleAB | Scale factor for
fct_IDAB. (Real) |
|
fct_IDSM | Function identifier for shear modulus versus temperature. (Integer) |
|
fct_IDBM | Function identifier for bulk modulus versus temperature. (Integer) |
|
FscaleSM | Shear modulus scale factor for
fct_IDSM. Default = 1.0 (Real) |
|
FscaleBM | Bulk modulus
scale factor for fct_IDbM. Default = 1.0 (Real) |
|
Stiffness | Stiffness weight factor for secondary networks, (
). Default = 0.0 (Real) |
|
networkID | Number of network (Must be left justified). 5
(Characters) |
|
A1 | Effective creep strain rate. 7 Default = 0.0 (Positive Real) |
|
A2 | Effective creep strain rate. Default = 0.0 (Positive Real) |
|
A3 | Effective creep strain rate. Default = 0.0 (Positive Real) |
|
C | Exponent characterizing the creep strain dependence of the effective creep strain rate in
network B, (-1 < C < 0). Default = -0.7 (Real) |
|
M | Positive exponent ≥ 1 characterizing the effective stress dependence of the effective creep
strain rate in secondary network. Default = 1.0 (Real) |
|
Constant for regularization of the creep strain rate near the undeformed state. Default = 0.01 (Real) |
||
Tau_ref | Reference stress for the effective creep strain
rate in secondary network. Default = 1.0 (Real) |
|
B | Coefficient in hyperbolic sine viscous model multiplying the norm of the stress in the
secondary network. (Real) |
|
n2 | Exponent in hyperbolic sine viscous model in the secondary network. (Real) |
|
n3 | Exponent in power law viscous model in the secondary network. (Real) |
|
M3 | Exponent in power law viscous model in the secondary network. (Real) |
|
Scaling factor for plastic flow rule. (Real) |
||
Flow
resistance for plastic flow rule. Default = 1.0 (Real) |
||
Weight factor for flow resistance in plastic flow rule. Default = 1.0 (Real) |
||
Characteristic strain for plastic flow rule. Default = 1.0 (Real) |
||
Exponent for plastic flow rule. Default = 1 (Integer) |
Example (Polynomial Model and One Network)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW100/1/1
Hyperelastic mat with Polynomial form and one network
# RHO_I
1.4200000000000E-06
#N_NETWORK FLAG_HE FLAG_Cr
1 1
# C10 C01 C20 C11 C02
0.2019 0. 4.43E-5
# C30 C21 C12 C03
1.295E-4 0. 0. 0.
# D1 D2 D3
2.1839e-3
# KEYNET FLAG_VISC SCALESTIFF
NETWORK1 1 1.0
# A EXPC EXPM KSI Tau_ref
2000. -1.0 10 0.01
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example (Polynomial Model and Three Networks)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW100/1/1
Hyperelastic mat with Polynomial form and three networks
# RHO_I
1.4200000000000E-06
#N_NETWORK FLAG_HE FLAG_Cr
3 1
# C10 C01 C20 C11 C02
0.2019 0. 4.43E-5
# C30 C21 C12 C03
1.295E-4 0. 0. 0.
# D1 D2 D3
2.1839e-3
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
# KEYNET FLAG_VISC SCALESTIFF
NETWORK1 1 0.6
# A1 EXPC EXPM KSI Tau_ref
2000. -1.0 10 0.01
NETWORK3 2 0.1
# A2 B0 EXPN
1.000 1.0 2.
NETWORK2 3 0.3
# A3 EXPN EXPM
1.0 5.0 2.
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- This material is only compatible with solid elements with Lagrange type total strain. The strain formulation flag is automatically set to Ismstr =10 in /PROP/SOLID.
- The response of the material can be
represented using a set of parallel networks. Network 0 is the equilibrium network with a
nonlinear hyperelastic component and optional creep component. In secondary networks, a
nonlinear hyperelastic component is in series with a nonlinear viscoelastic flow element, and
hence is the time-dependent network. All networks have the same hyperelastic behavior, scaled
by a stiffness weight factor for the secondary networks.The sum of the stiffness weight factors must be equal to 1:
(1) - Same polynomial strain energy potential is used for the hyperelastic components in all networks. In secondary networks, this potential is scaled by a factor .
- Flag_HE
- 1 = Polynomial form: The energy density is then written
(2) - 2 = Arruda-Boyce: The energy density is then written:
(3) - 3 = Neo-Hook: The energy density is then written:
(4) - 4 = Mooney-Rivlin: The energy density is then written:
(5) - 5 = Yeoh: The energy density is then written:
(6) - 13 = Neo-Hook with temperature: The energy density is then
written:
(7)
and the energy density for each secondary network:(8) Then, the total energy density for the secondary network is(9) Note:(10) (11) (12) (13) The Cauchy stress is computed as:(14) - 1 = Polynomial form: The energy density is then written
- The networkID must be
left justified, and the name must use the form
"NETWORKi"
Where, i is the networkID. Other names like "network1" or "NET1" are not allowed.
- Polynomial form:
- The initial shear modulus and the bulk modulus are computed as:
(15) and(16) - If D1 = 0, an incompressible material is considered.
- The initial shear modulus and the bulk modulus are computed as:
- The effective creep strain rate
- For Bergstrom Boyce viscous model, the expression is:
(17) Where,(18) - For Hyperbolic sine viscous model, the expression is:
(19) - For Power law viscous model, the expression is:
(20) Flow rule for equilibrium network:(21) (22)
- For Bergstrom Boyce viscous model, the expression is: