/MAT/LAW101
Block Format Keyword This law is a time and temperature dependent material model for thermoplastic polymers using a thermodynamic approach with physically-based multiscale internal state variables. This law is only available for solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW101/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E1 | |||||||||
C3 | |||||||||
C4 | |||||||||
C5 | C6 | C7 | |||||||
C8 | C9 | C10 | |||||||
C11 | C12 | C13 | |||||||
C14 | C1 | C2 | |||||||
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material
title. (Character, maximum 100 characters) |
|
Initial
density. (Real) |
||
Young's modulus at the
reference temperature. 6 (Real) |
||
E1 | Material parameter.
6 (Real) |
|
Poisson's
ratio. (Real) |
||
VE1, VE2 | Material parameter for
temperature dependent Young's modulus. 6 (Real) |
|
Material parameter for
temperature dependent Young's modulus. 6 (Real) |
||
Viscous flow. 8 (Real) |
||
Pressure sensitivity
parameter. 8 (Real) |
||
Activation energy.
8
No matter what units are used in the model, the activation energy is always entered as . (Real) |
||
V | Activation volume.
8 (Real) |
|
m | Viscous flow exponent.
8 (Real) |
|
C3 | Material parameter.
8 (Real) |
|
C4 | Material parameter.
8 (Real) |
|
, | Material parameter.
7 (Real) |
|
Hardening modulus.
7 (Real) |
||
Initial value for
state variable
. 7 (Real) |
||
Intial value for state
variable
. 7 (Real) |
||
C5 | Material parameter.
7 (Real) |
|
C6 | Material parameter.
7 (Real) |
|
C7 | Material parameter.
7 (Real) |
|
C8 | Material parameter.
7 (Real) |
|
C9 | Material parameter.
7 (Real) |
|
C10 | Material parameter.
7 (Real) |
|
Hardening modulus.
7 (Real) |
||
C11 | Material parameter.
7 (Real) |
|
C12 | Material parameter.
7 (Real) |
|
C13 | Material parameter.
7 (Real) |
|
C14 | Material parameter.
7 (Real) |
|
C1 | Material parameter.
7 (Real) |
|
C2 | Material parameter.
7 (Real) |
|
Network locking
stretch. 7 (Real) |
||
Density at the
reference temperature. 9 (Real) |
||
Heat capacity at the
reference temperature. 9 (Real) |
||
Reference temperature.
(Real) |
||
Thermal
expansion. (Real) |
||
Glass transition
temperature. 9 (Real) |
||
Material conversion
factor for temperature calculation when the adiabatic condition
is set. 9 (Real) |
||
Temperature activation flag.
(Real) |
||
Initial
temperature. (Real) |
Example
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW101/1/1
Talc filled Polypropylene
# RHO_I
9.05E-3
# EREF E1 Nu VE1
2700.0 0.2600 0.0E-1
# VE2 EDOT_REF GAMA_DOT_REF ALPHAP
1.0E-2 1.0E3 3.464E+18 8.313E-2
# delta_H V m C3
109000.0 1.325E-27 5.000
# C4 ALPHAK1 ALPHAK2 H0
12 1.0E-2 0.0 40
# ZETA1_i C5 C6 C7
0.000 -9.0E-3 0.6600 0
# C8 C9 C10 h1
0.200 -0.300 6.700 0.000
# ZETA2_i C11 C12 C13
0.000 0.0 12.000 -7.0E-3
# C14 C1 C2 LAMBDA_L
0.600 -0.1000 8.000 4.800
# RHO_theta_0 CV_theta_0 THETA0 ALPHA_TH
9.05E-10 2.0E9 298.000 7.70E-5
# THETA_GLASS TEMP_FACTOR THETA_FLAG THETAi
373.000 0.000 0.000 298.000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
Comments
- This material is only compatible with solid elements, with Lagrange type total strain. The strain formulation flag defaults to Ismstr =10 in /PROP/SOLID.
- The computational cost of this material law is high. However, this model gives very good results for polypropylene materials.
- This model is proposed by
Bouvard 1 based on a thermodynamic framework in
which physically based Internal State Variables (ISVs) are selected to
accurately represent the underlying physics of the polymer chain
deformation. These ISVs describe the current energetic state of the polymer
network and are included in the Helmholtz free energy. The model is based on
three ISVs:
- Internal strain-like scalar induced by entanglement points. These points represent a sort of obstacle to the chain motion and, during the chain entanglement slippage at a certain amount of stress leads to a strain softening (observed experimentally on Figure 1).
- Internal strain-like scalar associated to with chain alignment and coiling at large strains, that causes material hardening.
- Internal strain-like tensor associated to with chain orientation and chain stretching at large strains, causing material hardening.
The description of the kinematics of the problem is based on the decomposition of the deformation gradient into elastic, viscoplastic, and isotropic thermal components.(1) - The model considers the
incompressible plastic flow, that brings
. Considering that
and that the elastic logarithmic strain
tensor
, the mandel stress tensor
can be calculated as:
(2) With,(3) And,(4) Where,- Young's modulus.
- Poisson coefficient.
- Bulk moduli.
- Shear moduli.
- The Cauchy stress tensor
can be obtained from the Mandel
stress:
(5) The viscoplastic flow rule, which describes the evolution equation for is:(6) With,(7) Where,- Viscous flow direction.
- Deviatoric part of the tensor.
(8) The tensor is the corresponding stress-like tensor to the strain-like tensor , representing the chain stretching at large deformation. The viscous flow is given by:(9) Where,- Viscous shear strain rate.
- Amount of plastic shear stress.
Finally, the internal state variables evolution rules are:(10) (11) (12) And(13) - Young's modulus as a
function of temperature is:
(14) - Internal State Variables
(ISVs):
ISV 1 ISV 2 ISV 3 - Flow rule:
- Heat generation (in
adiabatic conditions):Where,
Notation Description Notation Description Material parameter Plastic component of the velocity gradient Material parameter Logarithmic strain tensor Internal shear stress Young's modulus at reference temperature Pressure sensitivity parameter Material parameter ISV 3 tensor Deformation gradient Viscous flow Elastic component of Nominal strain Plastic component of Hencky (true) strain Thermal component of Viscosity Material parameter Temperature Activation energy Internal stress fields induced by entanglement points Hardening modulus Stretch Hardening modulus Network locking stretch Determinant of Equivalent plastic stretch Elastic bulk modulus Elastic shear modulus Boltzmann constant Internal shear stress modulus Mandel stress Rubbery modulus Viscous flow exponent Poisson coefficient Viscous flow direction Effective pressure Gas constant Cauchy (true) stress Material parameter Equivalent shear stress Antisymmetric, symmetric part of Free energy Activation volume Conversion factor Yield surface Cauchy-Green tensor ISV 1 Heat capacity ISV 2 Material parameters Strain criteria for chain slip Velocity gradient Saturation value for