/MAT/LAW41 (LEE_TARVER)

Block Format Keyword This material law describes detonation products using an ignition and growth model of a reactive material.

The Lee-Tarver model is based on the assumption that the ignition starts at local hot spots in the passage of shock front and grows outward from these sites. The reaction rate is controlled by the pressure and the surface area as in a deflagration process.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW41/mat_ID/unit_ID or /MAT/LEE_TARVER/mat_ID/unit_ID
mat_title
ρ i ρ 0            
Ireac                  
A r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ B r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ R 1 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 3 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@
A p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ B p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ R 1 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 2 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ R 3 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@
C ν r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ C ν p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@        
itr   ε check        
rki ex ri        
rkg yg zg ex1    
k X tol        
grow2 ex2 yg2 zg2    
ccrit fmxig fmxgr fmngr    
G Ti            

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Interger, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i Initial density.

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state).

Default = ρ i (Real)

[ kg m 3 ]
Ireac Ignition and growth model flag.
=1 (Default)
for Lee_Tarver
= 2
for Dyna

(Integer)

 
A r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ Reagents JWL parameter.

(Real)

[ Pa ]
B r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ Reagents JWL parameter.

(Real)

[ Pa ]
R 1 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Reagents JWL parameter.

(Real)

 
R 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Reagents JWL parameter.

(Real)

 
R 3 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Reagents JWL parameter. 4

(Real)

[ J m 3 K ]
A p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ Product JWL parameter.

(Real)

[ Pa ]
B p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamOCaaaaaaa@37E1@ Product JWL parameter.

(Real)

[ Pa ]
R 1 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Product JWL parameter.

(Real)

 
R 2 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Product JWL parameter.

(Real)

 
R 3 p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaaIXaaabaGaamOCaaaaaaa@38AD@ Product JWL parameter.

(Real)

[ J m 3 K ]
C ν r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ Heat capacity reagents.

(Real)

[ J m 3 K ]
C ν p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqaH9oGBaeaacaWGYbaaaaaa@399B@ Heat capacity product.

(Real)

[ J m 3 K ]
E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@ Heat of reaction.

(Real)

[ J m 3 ]
itr Maximum number of iterations for the mixing law.

Default = 80 (Integer)

 
ε Precision on hydrodynamic balance.

Default = 10-3 (Real)

 
check Limiter of the mass fraction of products.

Default = 10-5 (Real)

 
rki Chemical kinetic coefficient of the starting phase (Lee-Tarver and Dyna-2D).

(Real)

[ s 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGLBbGaayzxaaaa aa@3A9F@
ex Chemical kinetic coefficient of the starting phase (Lee-Tarver and Dyna-2D).

(Real)

 
ri Chemical kinetic coefficient of the starting phase (Lee-Tarver and Dyna-2D).

(Real)

 
rkg Chemical kinetic coefficient of the growing phase (Lee-Tarver and Dyna-2D).

(Real)

[ s 1 P a Z g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiiuaiaacggadaah aaWcbeqaaiabgkHiTiaadQfadaWgaaadbaGaam4zaaqabaaaaaGcca GLBbGaayzxaaaaaa@3F92@
yg Chemical kinetic coefficient of the growing phase (Lee-Tarver and Dyna-2D).

(Real)

 
zg Chemical kinetic coefficient of the growing phase (Lee-Tarver and Dyna-2D).

(Real)

 
ex1 Chemical kinetic coefficient of the growing phase (Dyna-2D).

(Real)

 
k Numerical limiters coefficient (Lee-Tarver and Dyna-2D).

Default = 99.0 (Real)

 
X Numerical limiters coefficient (Dyna-2D).

Default = 99.0 (Real)

 
tol Numerical limiters coefficient (Dyna-2D).

Default = 0.0 (Real)

 
grow2 Growing phase 2 coefficient (Dyna-2D).

(Real)

s 1 P a Z g2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiiuaiaacggadaah aaWcbeqaaiabgkHiTiaadQfadaWgaaadbaGaam4zaiaaikdaaeqaaa aaaOGaay5waiaaw2faaaaa@404B@
ex2 Growing phase 2 coefficient (Dyna-2D).

(Real)

 
yg2 Growing phase 2 coefficient (Dyna-2D).

(Real)

 
zg2 Growing phase 2 coefficient (Dyna-2D).

(Real)

 
ccrit Starting threshold (for compression) (Dyna-2D).

(Real)

 
fmxig Starting threshold (mass fraction) (Dyna-2D).

(Real)

 
fmxgr Coefficient (Dyna-2D). 5

(Real)

 
fmngr Coefficient (Dyna-2D). 5

(Real)

 
G Shear modulus.

(Real)

[ Pa ]
Ti Initial temperature.

(Real)

[ K ]

Example (LX17)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW41/1
LX17 (unit Mg-mm-s)
#              RHO_I               RHO_0
                1900                   0
#    Ireac
         2
#                 Ar                  Br                 R1r                 R2r                 R3r
       4930000000000       -166000000000                7.44                3.72           3.3337E-5
#                 Ap                  Bp                 R1p                 R2p                 R3p
        696000000000          2500000000                 4.4                 .94              4.3E-6
#                Cvr                 Cvp                  Eq
                2781                1000                .088
#     iter                           EPS               check
         0                             0                   0
#                rki                  ex                  ri
           100000000                   1                   4
#                rkg                  yg                  zg                 ex1
          1000000000                .371                   3                .191
#                  K                   X                 tol
                   0                   0                   0
#              grow2                 ex2                 yg2                 zg2
                   0                   1                   1                   1
#              ccrit               fmxig               fmxgr               fmngr
                   0                 .25                   1                 100
#                  G                  Ti
            75000000                 298
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. If f is the mass fraction of the products and p is the reduced pressure:
    Ireac = 1: "Ignition and growth" according to Lee/Tarver(1)
    d f d t ) i = r k i ( 1 f ) e x ( ρ ρ 0 1 ) r i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaamyAaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadUgaca WGPbaabeaakiabgwSixpaabmaabaGaaGymaiabgkHiTiaadAgaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadwgacaWG4baaaOGaeyyXIC9aae WaaeaadaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaaleaacaaIWaaa beaaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGYbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@5478@
    (2)
    d f d t ) g = r k g ( 1 f ) e x f y g p z g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadUgaca WGNbaabeaakiabgwSixpaabmaabaGaaGymaiabgkHiTiaadAgaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadwgacaWG4baaaOGaeyyXICTaam OzamaaCaaaleqabaGaamyEamaaBaaameaacaWGNbaabeaaaaGccqGH flY1caWGMbWaaWbaaSqabeaacaWG6bWaaSbaaWqaaiaadEgaaeqaaa aaaaa@5337@
    Ireac = 2: "Ignition and growth" according to the formulation introduced in Dyna-2D(3)
    d f d t ) i = r k i ( f m x i g f ) e x ( ρ ρ 0 1 c c r i t ) r i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaamyAaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaadMgaca WGRbaabeaakiabgwSixpaabmaabaGaamOzaiaad2gacaWG4bGaamyA aiaadEgacqGHsislcaWGMbaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGLbGaamiEaaaakiabgwSixpaabmaabaWaaSaaaeaacqaHbpGCaeaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaaaaOGaeyOeI0IaaGymaiabgk HiTiaadogacaWGJbGaamOCaiaadMgacaWG0baacaGLOaGaayzkaaWa aWbaaSqabeaacaWGYbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@5E0C@
    (4)
    d f d t ) g 1 = r k g ( 1 f ) e x 1 f y g 1 P z g 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaiaaigdaaeqaaOGaeyypa0Jaam4zaiaadkhacaWGVb Gaam4DamaaBaaaleaacaaIXaaabeaakiabgwSixpaabmaabaGaaGym aiabgkHiTiaadAgaaiaawIcacaGLPaaadaahaaWcbeqaaiaadwgaca WG4bGaaGymaaaakiabgwSixlaadAgadaahaaWcbeqaaiaadMhadaWg aaadbaGaam4zaiaaigdaaeqaaaaakiabgwSixlaadcfadaahaaWcbe qaaiaadQhadaWgaaadbaGaam4zaiaaigdaaeqaaaaaaaa@57C8@
    (5)
    d f d t ) g 2 = g r o w 2 ( 1 f ) e x 2 f y g 2 P z g 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeGaaeaada WcaaqaaiaadsgacaWGMbaabaGaamizaiaadshaaaaacaGLPaaadaWg aaWcbaGaam4zaiaaikdaaeqaaOGaeyypa0Jaam4zaiaadkhacaWGVb Gaam4DamaaBaaaleaacaaIYaaabeaakiabgwSixpaabmaabaGaaGym aiabgkHiTiaadAgaaiaawIcacaGLPaaadaahaaWcbeqaaiaadwgaca WG4bGaaGOmaaaakiabgwSixlaadAgadaahaaWcbeqaaiaadMhadaWg aaadbaGaam4zaiaaikdaaeqaaaaakiabgwSixlaadcfadaahaaWcbe qaaiaadQhadaWgaaadbaGaam4zaiaaikdaaeqaaaaaaaa@57CD@
  2. Coefficient grow1 is initialized by rkg
  3. Coefficients yg1 and zg1 are respectively initialized by yg and zg.
  4. Coefficients R3 and ω are linked by the relation: R 3 = ω C ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIZaaabeaakiabg2da9iabeM8a3jaadoeadaWgaaWcbaGa eqyVd4gabeaaaaa@3D40@
  5. Coefficients fmxgr and fmngr are the limiters of the growth rate according to the mass fraction of products.
  6. This material law is not compatible with ALE.
  7. Heat of reaction E Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGrbaabeaaaaa@37C3@ is supposed to be constant whatever the value of F is.
  8. Reagent pressure and detonation products pressure are computed using a modified Jones-Wilkins-Lee equation of state:
    In terms of relative volume v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36F2@ :(6)
    P ( v , T ) = A e R 1 v + B e R 2 v + R 3 T v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuamaabm aabaGaamODaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Jaamyq aiaadwgadaahaaWcbeqaaiabgkHiTiaadkfadaWgaaadbaGaaGymaa qabaWccaWG2baaaOGaey4kaSIaamOqaiaadwgadaahaaWcbeqaaiab gkHiTiaadkfadaWgaaadbaGaaGOmaaqabaWccaWG2baaaOGaey4kaS IaamOuamaaBaaaleaacaaIZaaabeaakiaadsfacaWG2baaaa@4C76@

    Where, v = V V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2 da9maalaaabaGaamOvaaqaaiaadAfadaWgaaWcbaGaaGimaaqabaaa aaaa@3AA4@

    In terms of μ :(7)
    P ( μ , T ) = A e R 1 / ( 1 + μ ) + B e R 2 / ( 1 + μ ) + R 3 T / ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuamaabm aabaGaeqiVd0MaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpcaWG bbGaamyzamaaCaaaleqabaGaeyOeI0IaamOuamaaBaaameaacaaIXa aabeaaliaac+cadaqadaqaaiaaigdacqGHRaWkcqaH8oqBaiaawIca caGLPaaaaaGccqGHRaWkcaWGcbGaamyzamaaCaaaleqabaGaeyOeI0 IaamOuamaaBaaameaacaaIYaaabeaaliaac+cadaqadaqaaiaaigda cqGHRaWkcqaH8oqBaiaawIcacaGLPaaaaaGccqGHRaWkcaWGsbWaaS baaSqaaiaaiodaaeqaaOGaamivaiaac+cadaqadaqaaiaaigdacqGH RaWkcqaH8oqBaiaawIcacaGLPaaaaaa@5AED@

    Where, μ = ρ ρ 0 1 = 1 v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baaaaOGaeyOeI0IaaGymaiabg2da9maalaaabaGaaGymaaqaaiaadA haaaGaeyOeI0IaaGymaaaa@434F@ .

1 E.L. Lee and C.M. Tarver "Phenomenological model of shock initiation in heterogeneous explosives" Phy. Fluids Vol. 23, No. 12, December 1980.