/SLIPRING/SPRING

Block Format Keyword Define 1D slipring for seatbelt elements defined with /MAT/LAW114 and /PROP/TYPE23.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/SLIPRING/SPRING/slipring_ID/unit_ID
slipring_title
El_ID1 El_ID2 node_ID1 node_ID2 sens_ID Fl_flag A Ed_factor
fct_ID1 fct_ID2 Fric_d Xscale1 Yscale2 Xscale2
fct_ID3 fct_ID4 Fric_s Xscale3 Yscale4 Xscale4

Definition

Field Contents SI Unit Example
slipring_ID Slipring identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

slipring_title Slipring title title.

(Character, maximum 100 characters)

El_ID1 ID of first element in slipring.

(Integer, maximum 10 digits)

El_ID2 ID of second element in slipring.

(Integer, maximum 10 digits)

node_ID1 ID of anchorage node.

(Integer, maximum 10 digits)

node_ID2 Optional ID of node for the orientation of the slipring.

(Integer, maximum 10 digits)

sens_ID Sensor identifier used for slipring locking.
= 0
The slipring is unlocked.

(Integer)

Fl_flag Sliding direction control flag
= 0 (Default)
Slip in both directions.
= 1
Slip from El_ID1 to El_ID2 only.
= 2
Slip from El_ID2 to El_ID1 only.

(Integer)

A Coulomb friction scale factor.

(Real)

Ed_factor Exponential decay factor for Coulomb friction.

(Real)

[ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadohaaeaacaWGTbaaaaGaay5waiaaw2faaaaa@39E3@
fct_ID1 Function identifier defining dynamic Coulomb friction coefficient as a function of time.

(Integer)

fct_ID2 Function identifier defining dynamic Coulomb friction coefficient as a function of normal force.

(Integer)

Fric_d Dynamic Coulomb friction coefficient.

If fct_ID1 = 0: constant value (Default = 0).

If fct_ID1 > 0: ordinate scaling factor for function fct_ID1 (Default = 1).

(Real)

Xscale1 Abcissa scaling factor for function fct_ID1.

Default = 1 (Real)

Yscale2 Ordinate scaling factor for function fct_ID2.

Default = 1 (Real)

Xscale2 Abcissa scaling factor for function fct_ID2.

Default = 1 (Real)

fct_ID3 Function identifier defining static Coulomb friction coefficient as a function of time.

(Integer)

fct_ID4 Function identifier defining static Coulomb friction coefficient as a function of normal force.

(Integer)

[ s ]
Fric_s Static Coulomb friction coefficient.

If fct_ID3= 0: constant value (Default = 0).

If fct_ID3> 0: ordinate scaling factor for function fct_ID2 (Default = 1).

(Real)

[ N ]
Xscale3 Abcissa scaling factor for function fct_ID3.

Default = 1 (Real)

Yscale4 Ordinate scaling factor for function fct_ID4.

Default = 1 (Real)

[ s ]
Xscale4 Abcissa scaling factor for function fct_ID4.

Default = 1 (Real)

[ N ]

Comments

  1. The slipring is defined by the 2 spring seatbelt elements initially connected to the slipring, El_ID1, El_ID2 and the node node_ID1 are used to define the position of the slipring. The common node between the 2 elements El_ID1 and EL_ID2 must be at the same coordinates as node_ID1.
  2. node_ID1 and node_ID2 must not be nodes of the seatbelt spring component.
  3. By default, the rotation axis of the slipring is defined by n d e f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGUbWaaSbaaSqaaiaadsgacaWGLbGaamOzaaqabaaakiaawEniaaaa @3B92@ , the normal direction to the plane defined by the two connected elements.
    Additionally, the rotation axis of the slipring can be defined by the direction of node_ID1 and node_ID2. the angle γ between the direction of node_ID1 and node_ID2 and n d e f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGUbWaaSbaaSqaaiaadsgacaWGLbGaamOzaaqabaaakiaawEniaaaa @3B92@ is used to compute the friction.


    Figure 1.
  4. The Coulomb friction coefficient is computed with:(1)
    μ = ( 1 + A γ 2 ) ( μ d y n + ( μ s t a t μ d y n ) e E d _ f a c t o r . | V r e l | ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0ZaaeWaaeaacaaIXaGaey4kaSIaamyqaiabeo7aNnaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaamaabmaabaGaeqiVd02aaSbaaS qaaiaadsgacaWG5bGaamOBaaqabaGccqGHRaWkdaqadaqaaiabeY7a TnaaBaaaleaacaWGZbGaamiDaiaadggacaWG0baabeaakiabgkHiTi abeY7aTnaaBaaaleaacaWGKbGaamyEaiaad6gaaeqaaaGccaGLOaGa ayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaamyraiaadsgacaGGFb GaamOzaiaadggacaWGJbGaamiDaiaad+gacaWGYbGaaiOlamaaemaa baGaamOvamaaBaaameaacaWGYbGaamyzaiaadYgaaeqaaaWccaGLhW UaayjcSdaaaaGccaGLOaGaayzkaaaaaa@655C@
    Where,
    μ s t a t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadohacaWG0bGaamyyaiaadshaaeqaaaaa@3BA9@
    Static friction coefficient
    μ d y n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadsgacaWG5bGaamOBaaqabaaaaa@3AB3@
    Dynamic friction coefficient
    V r e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGYbGaamyzaiaadYgaaeqaaaaa@39D2@
    Relative slip velocity
    They are respectively computed with:(2)
    μ d y n = F r i c _ d . f c t _ I D 1 ( t X s c a l e 1 ) + Y s c a l e 2 . f c t _ I D 2 ( F n X s c a l e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadsgacaWG5bGaamOBaaqabaGccqGH9aqpcaWGgbGaamOC aiaadMgacaWGJbGaai4xaiaadsgacaGGUaGaamOzaiaadogacaWG0b Gaai4xaiaadMeacaWGebWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa daWcaaqaaiaadshaaeaacaWGybGaam4CaiaadogacaWGHbGaamiBai aadwgadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaayzkaaGaey4k aSIaamywaiaadohacaWGJbGaamyyaiaadYgacaWGLbWaaSbaaSqaai aaikdaaeqaaOGaaiOlaiaadAgacaWGJbGaamiDaiaac+facaWGjbGa amiramaaBaaaleaacaaIYaaabeaakmaabmaabaWaaSaaaeaacaWGgb GaamOBaaqaaiaadIfacaWGZbGaam4yaiaadggacaWGSbGaamyzamaa BaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaaaaa@6915@
    (3)
    μ s t a t = F r i c _ s . f c t _ I D 3 ( t X s c a l e 3 ) + Y s c a l e 4 . f c t _ I D 4 ( F n X s c a l e 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadohacaWG0bGaamyyaiaadshaaeqaaOGaeyypa0JaamOr aiaadkhacaWGPbGaam4yaiaac+facaWGZbGaaiOlaiaadAgacaWGJb GaamiDaiaac+facaWGjbGaamiramaaBaaaleaacaaIZaaabeaakmaa bmaabaWaaSaaaeaacaWG0baabaGaamiwaiaadohacaWGJbGaamyyai aadYgacaWGLbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMca aiabgUcaRiaadMfacaWGZbGaam4yaiaadggacaWGSbGaamyzamaaBa aaleaacaaI0aaabeaakiaac6cacaWGMbGaam4yaiaadshacaGGFbGa amysaiaadseadaWgaaWcbaGaaGinaaqabaGcdaqadaqaamaalaaaba GaamOraiaad6gaaeaacaWGybGaam4CaiaadogacaWGHbGaamiBaiaa dwgadaWgaaWcbaGaaGinaaqabaaaaaGccaGLOaGaayzkaaaaaa@6A24@
  5. When the slipring is unlocked, sliding is activated if the difference of force after flow (marked with *) is lower than the difference of force obtained without flow, and material flow δ L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam itamaaBaaaleaacaaIWaaabeaaaaa@3953@ is computed accordingly:

    | F k * F k 1 * | < | F k F k 1 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WGgbWaaSbaaSqaaiaadUgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGa eyOeI0IaamOramaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqabaGcda ahaaWcbeqaaiaacQcaaaaakiaawEa7caGLiWoacqGH8aapdaabdaqa aiaadAeadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWGgbWaaSbaaS qaaiaadUgacqGHsislcaaIXaaabeaaaOGaay5bSlaawIa7aaaa@4BF7@ with F k * F k1 * = e μθ.sign( F k * F k1 * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGgbWaa0baaSqaaiaadUgaaeaacaGGQaaaaaGcbaGaamOramaaDaaa leaacaWGRbGaeyOeI0IaaGymaaqaaiaacQcaaaaaaOGaeyypa0Jaam yzamaaCaaaleqabaGaeqiVd0MaeqiUdeNaaiOlaiaadohacaWGPbGa am4zaiaad6gacaGGOaGaamOramaaDaaameaacaWGRbaabaGaaiOkaa aaliabgkHiTiaadAeadaqhaaadbaGaam4AaiabgkHiTiaaigdaaeaa caGGQaaaaSGaaiykaaaaaaa@5020@



    Figure 2.
  6. The common node of the 2 strands of the slipring is kinematically attached to the anchorage node of the slipring node_ID1. No other kinematic condition can be applied to any node of a seatbelt element which can enter the slipring.
  7. When the length of one strand reaches zero, the slipring is updated. This strand reappears on the other side of the slipring and the previously connected strand on that side leaves the slipring. At the same time, a new spring enters the slipring replacing the one that has moved. The kinematic condition with the anchorage node is also switched to the new common node of the strands. The previous common node is released with an initial velocity computed from the material flow and direction of the released element, such that the two directions of the slipring n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGUbWaaSbaaSqaaiaadUgaaeqaaaGccaGLxdcaaaa@39C3@ and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGUbWaaSbaaSqaaiaadUgaaeqaaaGccaGLxdcaaaa@39C3@ and the angle θ are not modified by the update.(4)
    V i n i = δ L 0 d t n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca WGwbWaaSbaaSqaaiaadMgacaWGUbGaamyAaaqabaaakiaawEniaiab g2da9maalaaabaGaeqiTdqMaamitamaaBaaaleaacaaIWaaabeaaaO qaaiaadsgacaWG0baaamaaFiaabaGaamOBamaaBaaaleaacaWGRbaa beaaaOGaay51Gaaaaa@45B5@


    Figure 3.
  8. To ensure element and time step stability, maximum stiffness value is computed from L min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaaaa@39C6@ defined in seatbelt material (/MAT/LAW114) and spring element reference length L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIWaaabeaaaaa@37AE@ .(5)
    K = k max ( L min , L 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 da9maalaaabaGaam4AaaqaaiGac2gacaGGHbGaaiiEamaabmaabaGa amitamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaaiilaiaadY eadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaaaaa@4374@
  9. When a spring element is in the slipring, viscosity is deactivated.