

FOIL COIL MODELING

Flux 2D : Geometry, Mesh and Physics

Introduction

• Foil coil: Winding obtained from a thin, rectangular, metallic sheet folded in a spiral-like shape

Figure 1: A thin metallic sheet (a) folded in the shape of a foil coil (b).

CREATE PROJECT GEOMETRY

Create new Flux 2D project

Define X symmetry

Create geometric parameters

Name	Comment	Algebraic expression	
В	Coil height	76.2	
С	Coil thickness	41	
D	Coil mean diameter	136	
Α	Inner radius	0.5*D-0.5*C	
L	Radius of the circumference circumscribed to coil	Sqrt((A+C)^2+(B/2)^2)	
R	Domain radius	6*L	

Define application: Steady State AC Magnetic 2D

Define application variation parameters

Create infinite box

Build coil points

Build coil lines

Build faces and infinite box

DEFINE PROJECT PHYSICS

Create Aluminum material

Create foil coil circuit components

Circuit components definition

Double click on voltage source

Double click on coil component

Rename it FOIL_COIL_CIRCUITCOMPONENT

Create coil parameters

Name	Comment	Expression	
V	Coil terminals voltage (volt)	U(FOIL_COIL_CIRCUITCOMPONENT)	
I	Coil terminals current (ampere)	I(FOIL_COIL_CIRCUITCOMPONENT)	
Resistance	Coil resistance (ohms)	$(ModC(V)/ModC(I))^*Cos(Arg(V)\text{-}Arg(I))$	
Reactance	Coil reactance (ohms)	$(ModC(V)/ModC(I))^*Sin(Arg(V)\text{-}Arg(I))$	
Impedance_Modulus	Coil impedance modulus (ohms)	(ModC(V)/ModC(I))	
Impedance_angle	Coil impedance angle (degrees)	(Arg(V)-Arg(I))*180/Pi()	

Create regions: Air

Create regions: Foil coil

Assign faces to region

Create mesh lines – Arithmetic lines

Name	Comment	Number of segments	
COIL_HOLE_X	Coil hole discretization along radial direction	10	
COIL_X_DISCR	Coil arithmetic discretization along radial direction	10	
COIL_Y_DISCR	Coil arithmetic discretization along axial direction	15	

Create mesh lines – Geometric with imposed number of elements

Name	Comment	Number of segments	Ratio R of the progression
DOMAIN_X_DISCR	Discretization of the radial horizontal boundary of the domain	15	1.25
DOMAIN_Y_DISCR	Discretization of the radial vertical boundary of the domain	15	1.25

Assign mesh lines

Orient mesh line

Create face relaxation

Assign face relaxation

Mesh domain

POST-PROCESSING

Create solving Scenario Reference Values: Get reference values

Solve scenario Reference Values

Display Isovalues

Create post processing support path

Plot current density on 1st path

Current density on chosen path

DISCOVER CONTINUOUSLY. ADVANCE INFINITELY.

Visit altair.com to learn more.

