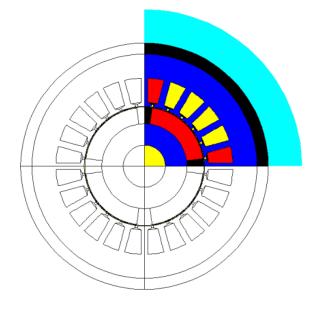
Flux Activate coupling SPM Motor with Regulation

2D Multiphysics Summary

Introduction

This document describes Flux-Activate coupling on the example of SPM motor.

Keywords


Applications	Flux main functions
Transient Magnetic	Co-SimulationBrushless motor

Studied device

The studied device, a brushless AC with surface mounted permanent magnet motor presented in the figure below, includes the following elements:

- a fixed part (stator) including yoke, slots, and windings
- an air gap
- a movable part (rotor) with embedded magnets

A section of the model of the studied device is presented in the figure below.

Aim and steps

Aim

The aim of this coupling is to do a co-simulation between Flux and Activate. Activate serves to make the system part.

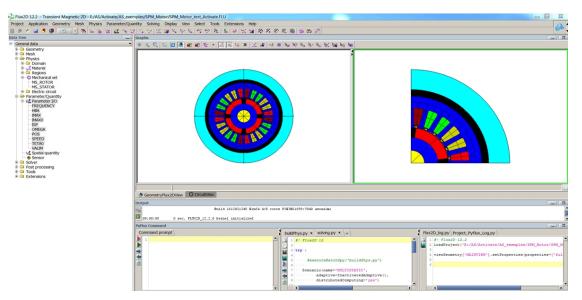
Action	Software
Device modeling	e Altair Flux™
Generate the coupling component for Activate	 Altair Flux™
Create the Flux connector	ACTIVATE
Solve the problem	ACTIVATE

Steps

The different steps to realize this coupling are shown in the table below:

Phase	Software	Description	
1	Flux	 Flux project preparation: Model description: geometry, mesh and physics Specific description: creation of the input/output parameters required for the coupling Generate the coupling component for Activate 	
2	Flux	Activate opening:Preparation of the Activate model	
3	Activate / Flux	Solve the problem	
4	Activate / Flux	Post Processing	

Flux model


The first step is to prepare the Flux project:

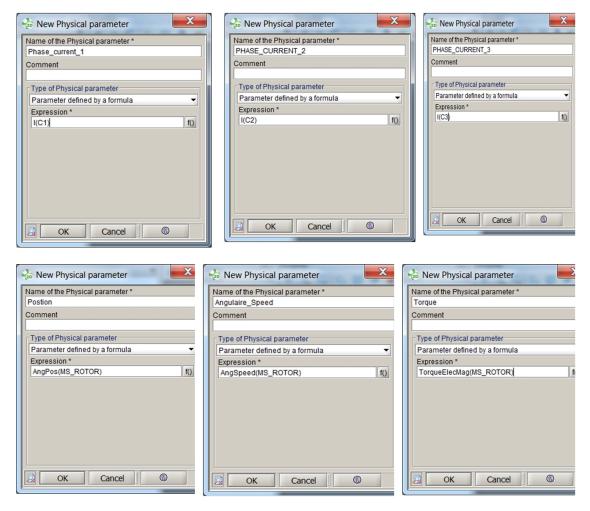
- The geometry, mesh the device and the physics description (materials, regions, non-mesh coils, mechanical sets) and circuit.
- We create the input and output parameter that we use to generate the coupling element between Flux and Activate
- Generate the coupling element

The motor is driven with a 3 phase sine current and running at constant speed. The simulated motor performances are used to compute shaft torque, torque ripples, Magnet losses, phase current, speed and mechanical power.

Flux model: detailed steps

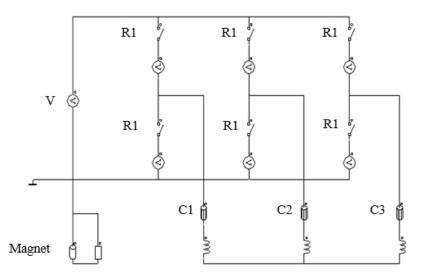
In the first step we create the geometry, mesh and physics. To do it, we open the project: SPM_Motor_Activate.FLU.

We create input and output parameters


- **1.** Inputs: Multi-Physical I/O Parameters that allow, via formulas to pilot the following:
 - the physical quantities: µr, Bs, Br etc.
 - electrical quantities: resistance, voltage, current etc.
 - mechanical quantities: position, speed, resistant force, resistive torque etc.
- 2. Outputs: Scalar I/O Settings that allows, via sensors, formulas, parameters to retrieve the values:
 - of sensors
 - of forces, couples etc
 - positions, speeds, accelerations etc.

Input parameters:

Entities	Modify all	R1	R2	R3	R4	R5	R6
Physical parameter							
NAME *		R1	R2	R3	R4	R5	R6
Comment	Initial values						
🗉 🔘 Sub types	Initial values	Parameter fo	Parameter fo	Parameter fo	Parameter fo	Parameter for	Parameter fo
Parameter for multiphysical approximation	b	Parameter fo	Parameter fo	Parameter fo	Parameter fo	Parameter for	Parameter fo
Reference value *	Initial values	1.0	1.0	1.0	1.0	1.0	1.0


Output parameters:

Electrical circuit

The electrical circuit is defined as:

It is composed of:

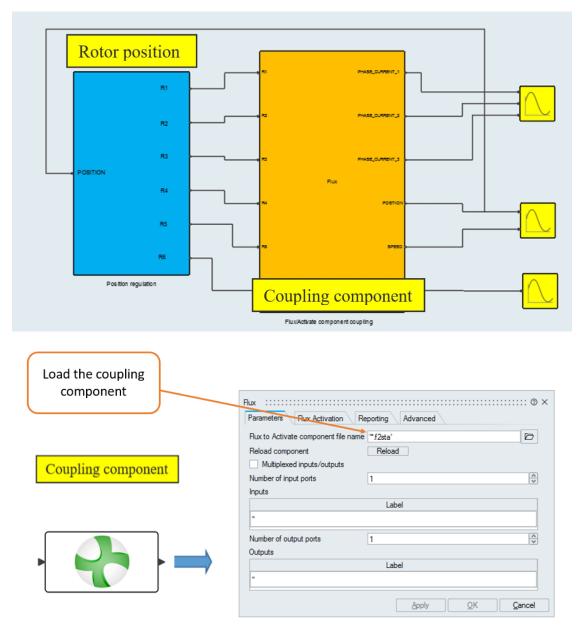
- Voltage source
- Coil conductor
- Resistor
- Inductance
- Solid conductor
- Switch

In the switches, we put the input parameter (R1, R2, R3, R4, R5 and R6).

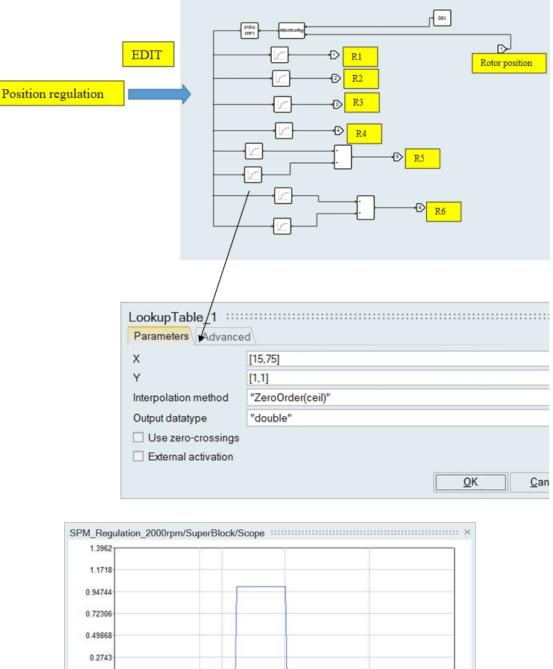
Generate component (solving >> generate component for Activate coupling) for Activate coupling in the same working directory.

Altair Flux[™] - 2D Example Summary: Flux Activate coupling SPM Motor with Regulation Flux model

Name
Working directory
Inputs of the component: Geometric parameters I / O parameters (scenario)
Outputs of the component Geometric parameters I / O parameters (formula) Sensors


p.6

Model activation


Activate model

The user must prepare the Activate model by adding and characterizing the coupling block but also the blocks needed to build the desired model. We have two parts:

- Coupling component
- The command

0.72306 0.49868 0.2743 0.049915 -0.17447 -0.39885 -0.62323 -0.62323 -0.84761 -0.010607 -0.002198 0.0062107 0.014619 0.023028

The choice of solver and the step:

Simulation Param	eters		
Simulation Time Zero-Crossing Solvers			
Initial time	0		
Final time	0.01499		
Real time scaling	0		
Tolerance on time	auto		
Activate profiling	Signal period		
	<u>O</u> K		

Simulation Param	eters
Simulation Time Ze	ero-Crossing Solvers
Select a solver	CVODE-BDF-NEWTON
Algebraic solver	Ida
Absolute tolerance	0.000001
Relative tolerance	0.000001
Initial step size	1.499e-4
Minimum step size	1.499e-4
(Maximum) step size	1.499e-4
Jacobian method	numerical
	<u>O</u> K

Simulation results

No load test with constant speed (N=1000 rpm):

Properties	Value	unite
Moment of inertia	0	Kg.m ²
Constant friction coefficient	0	N.m
Viscous friction coefficient	0	N.m.s/deg
Friction coefficient proportional to the square speed	0	
speed	1000	Tr/min
Position at time 0	0	degg

Figure 1: The current (A) in each phase

Figure 2: The position (deg) and speed (rpm)

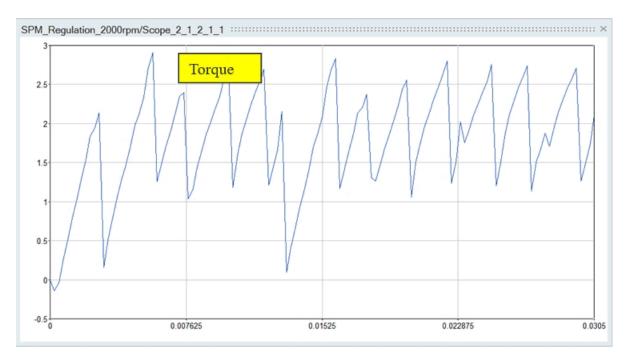


Figure 3: Torque (N.m)

