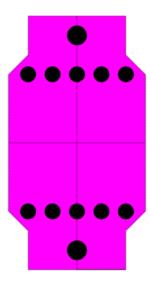
Electro thermal Flux-Flux cosimulation of a fuse

2D Multiphysics Summary


Introduction

This application note presents the co-simulation of a fuse with Flux 2D. To launch this co-simulation, two examples must be opened: "Electric" and Then "Thermal"

Keywords

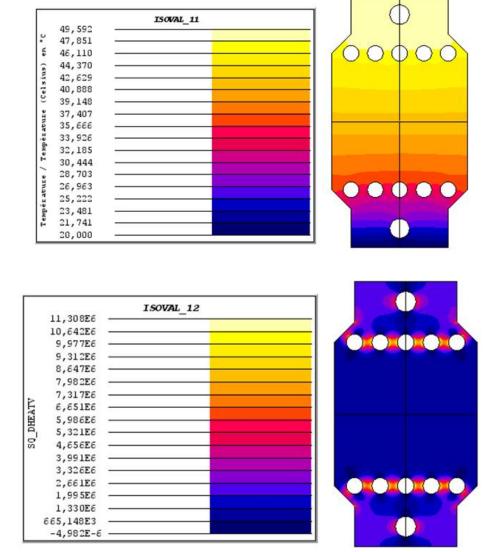
Applications	Flux main functions	Post-processed quantities
 Electrical conduction Transient thermal	Co-simulationLineic boundary conditions	 Electric quantities, thermal Joule losses

The studied device, represented in the figure below, is a fuse. The study represents the elevation of temperature linked to the conduction in the fuse. The fuse is composed of only one massive part, in which holes are drawn to modify the conduction

In practice

Open example = Open Flux + Run the pyFlux command file

- Recommended memory configuration (standard): 600 MiB Numerical + 50 MiB Character + 200 MiB GUI
- Computation time: t ~ 7 min [64 bit-16 Go RAM 2.2 GHz]


Example 1: Electro-thermal cosimulation

The electro-thermal co-simulation links:

- Electric conduction: Joule losses computations in the fuse
- Transient thermal: shows the temperature elevation depending of losses calculated in the electric conduction

At the end of the co-simulation, we have:

- Temperature isovalues in the fuse
- Current density isovalues in the fuse

