APPLICATION OF MAGNETIC FORCE EXPORT PER TOOTH: VIBRATION ANALYSIS FOR ELECTRIC MOTORS AT MULTI-SPEED FLUX 2D MULTIPHYSICS APPLICATION EXAMPLE December 2020, Altair Valorization and Support Team #### **GENERAL PRESENTATION OUTLINE** Part 1: Introduction Part 2: Motor pre-analysis in FluxMotor Part 3: Magnetic force export in Flux Part 4: Vibration analysis in SimLab Part 5: Conclusion # I. INTRODUCTION #### INTRODUCTION Electric motor vibration analysis at multi-speeds: solution with Altair HyperWorks - Two excitation (magnetic forces) format are currently available from Flux to OptiStruct: - Magnetic force export via an imported mesh - Magnetic force export per tooth #### INTRODUCTION - Tutorial example - The studied device is an inset permanent magnet synchronous motor (model: IkerMAQ). - The comprehensive magnetic and thermal analysis of the motor can be found in the Flux 2D supervisor example / Application notes / Magnetic and thermal analysis of a PMSM **Electromagnetic model:** Flux 2D project a) Without windings #### Mechanical model: SimLab projects b) With windings 🛆 ALTAIR - FluxMotor project preparation - Import the Motor Catalog ("IkerMAQ_Analysis") - Performance mapping test creation - Open "Motor Factory" - Performance mapping test - Access the performance mapping test results | Step | Action | |------|---| | 1 | Click on [TEST] to enter the TEST editing interface | | 2 | Click on the icon to access the sinewave test results | - Performance mapping test - Access the performance mapping test results - Motor pre-analysis: sine wave - Mechanical torque results | Step | Action | |------|--| | 1 | In "SECTIONS", click on
[Torque] in [Torque - Speed
curves] to plot the torque
speed curve. | - Motor pre-analysis: sine wave - Current results | Step | Action | |------|--| | 1 | In "SECTIONS", click on [Current] in [Current - Speed curves] to plot the current - speed curve. | | 2 | Select serval working points for the analysis | | Current / A | Speed / RPM | |-------------|-------------| | 90.0 | 88.597 | | 90.0 | 265.792 | | 90.0 | 442.986 | | 90.0 | 620.181 | | 90.0 | 824.113 | | 90.0 | 1028.046 | | 90.0 | 1231.978 | - Motor pre-analysis: sine wave - Control angle results | Step | Action | |------|--| | 1 | In "SECTIONS", click on [Control angle] in [Control angle - Speed curves] to plot the control angle-speed curve. | | 2 | Select serval working points for the analysis | | Control angle / deg | Speed / RPM | |---------------------|-------------| | 10.64 | 88.597 | | 10.64 | 265.792 | | 10.642 | 442.986 | | 10.67 | 620.181 | | 43.425 | 824.113 | | 61.758 | 1028.046 | | 76.19 | 1231.978 | - Flux 2D project: initiation - Activate [Beta] mode (to access the menu for exporting global force) Flux 2D project: initiation Load the physics-defined¹ Flux 2D project (driven by python script) | Step | Action | |------|--| | 1 | Open Flux supervisor | | 2 | Select the [2D] simulation context | | 3 | Click on [Python scripts] | | 4 | Select the working
path :
"~/ForceExportMultiSpeed
/Flux" | | 5 | Select the python file
"ForceExport_MultiSpeed_
Initiation.py" | | 6 | Click on [Run the selected script] | - Flux 2D project: initiation - Load the physics-defined Flux 2D project (driven by python script) - Flux 2D project: physics modification - Create physics parameters: FREQUENCY - Flux 2D project: physics modification - Create physics parameters: OMEGA - Flux 2D project: physics modification - Modify physics parameters: L_LOAD + R_LOAD | Step | Action | |------|---| | 1 | Select from the Data Tree the two parameters "L_LOAD" and "R_LOAD", right click and click on [Edit array] | | 2 | Modify the values of the two parameters | | 3 | Click on [OK] | | Parameter name | Value | |----------------|---------| | L_LOAD | 1.59E-4 | | R_LOAD | 1.0E-4 | - Flux 2D project: physics modification - Create physics parameters: GAMMA - Flux 2D project: physics modification - Create physics parameters: RMS_CURRENT - Flux 2D project: physics modification - Modify the coupling electric circuit | Step | Action | |------|--| | 1 | Click on [Physics] - [Circuit] - [Circuit editor context] | | 2 | Add three current sources to the coupling electric circuit | - Flux 2D project: physics modification - Modify current values | Step | Action | |------|--| | 1 | Double click on each current sources, and modify the current value | | Parameter name | Value | |----------------|---| | I_1 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180) | | I_2 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180-2*Pi()/3) | | I_3 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180-4*Pi()/3) | - Flux 2D project: physics modification - Modify current values | Step | Action | |------|--| | 1 | Double click on each current sources, and modify the current value | | Parameter name | Value | |----------------|---| | I_1 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180) | | I_2 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180-2*Pi()/3) | | I_3 | RMS_CURRENT*Sqrt(2)*Sin(OMEGA*
TIME+GAMMA*Pi()/180-4*Pi()/3) | - Flux 2D project: physics modification - Close the electric circuit editor | Step | Action | |------|--| | 1 | Click on the icon to exit the circuit editor context | - Flux 2D project: solving - Create solving scenario | Step | Action | |------|--| | 1 | Click on [Solving] –
[Solving scenario] – [New] | | 2 | Define the solving scenario
"MULTI_SPEED" | | 3 | Define the first control parameter "ROTOR" | | 4 | Click on "List of resulting values" to verify the values | | Parameter name | ROTOR | |------------------|------------| | Lower limit | 0.0 | | Higher limit | 144.0 | | Variation method | Step value | | Step value | 2.0 | - Flux 2D project: solving - Create solving scenario | Step | Action | |------|--| | 1 | Click on [Control of parameters] | | 2 | Select the physic parameter "SPEED", and click on [>>] | | 3 | Define the second control parameter "SPEED", and click on [>>] | | 4 | Click on "List of resulting values" to verify the values | | 5 | Click on [OK] | | Parameter name | SPEED | |------------------|---------------| | Lower limit | 88.597 | | Higher limit | 1231.978 | | Variation method | List of steps | - Flux 2D project: solving - Save the project | Step | Action | |------|--------------------------------| | 1 | Click on [Project] –
[Save] | - Flux 2D project: solving - Solve the project Computation time: 40 min - Flux 2D project: solving - Solve the project # MAGNETIC FORCE EXPORT (NODAL FORCES AND GLOBAL FORCES) - Flux 2D project: post-processing - Save the project | Step | Action | |------|---| | 1 | Click on [Project] –
[Save as] | | 2 | Define the name as
"IKERMAQ_MULTISPEED_
POSTPROCESSING.FLU" | | 3 | Click on [Save] | - Flux 2D project: post-processing - Open data import / export context | Step | Action | |------|---| | 1 | Click on [Data
exchange] – [Open
data Import / Export
context] | | 2 | Select the [Context dedicated to mechanical coupling] | | 3 | Click on [OK] | - Flux 2D project: post-processing - Open data import / export context Flux 2D project: post-processing Create data support - Flux 2D project: post-processing - Create data support - Flux 2D project: post-processing - Create force data collection | Step | Action | |------|---| | 1 | Click on [Data
collection] – [Forces
data collection] – [New] | | 2 | Define the force data collection name "DataCollection_Tooth Force" | | 3 | Define the data
support and the
computation radius as
139 mm | | 4 | Click on [OK] | | 5 | Click on [Cancel] | - Flux 2D project: post-processing - Create derived data collection for each speed | Step | Action | |------|--| | 1 | Click on [Data collection] –
[Derived data collection] –
[New] | | 2 | Define the support name
"DataCollection_ToothForce_
FFT_1" | | 3 | Define the data collection | | 4 | Select the speed value and the ANGLE interval [72, 144] | | 5 | Click on the "Automatic duplication of forces for rotating machines" | | 6 | Click on [OK] | **√** 72.0 √ 72.0 **144.0** - Flux 2D project: post-processing - Create derived data collection for each speed - Flux 2D project: post-processing - Collect data | Step | Action | |------|---| | 1 | Click on [Data
collection] – [Collect
Data] | Execution time: 10 min - Flux 2D project: post-processing - Create data visualizer for each speed - Nodal forces | Step | Action | |------|---| | 1 | Click on [Data visualizer] –
[Forces harmonics visualizer]
– [New] | | 2 | Define the visualizer name
"DataVisualizer_ToothForce_
Nodes_FFT_X" | | 3 | Select the objective speed and the component as "Resulting" | | 4 | Select the type as
"Forces at nodes" | | 5 | Select the rank as 0 | | 6 | Click on [OK] | × × - Flux 2D project: post-processing - Create data visualizer for each speed - Nodal forces - Flux 2D project: post-processing - Create data visualizer for each speed - Nodal forces - Flux 2D project: post-processing - Create data visualizer for each speed - Global forces | Step | Action | |------|--| | 1 | Click on [Data visualizer] –
[Forces harmonics visualizer]
– [New] | | 2 | Define the visualizer name
"DataVisualizer_ToothForce_
Global_FFT_X" | | 3 | Select the objective speed and the component as "Resulting" | | 4 | Select the type as
"Global forces" | | 5 | Select the rank as 0 | | 6 | Click on [OK] | × - Flux 2D project: post-processing - Create data visualizer for each speed - Global forces - Flux 2D project: post-processing - Create data visualizer for each speed - Global forces - Flux 2D project: post-processing - Create data export for each speed - Nodal forces | Step | Action | |------|--| | 1 | Click on [Data export] –
[Export to OptiStruct] – [New] | | 2 | Define the data export name
"DataExport_ToothForce_Nod
es_FFT_X" | | 3 | Define the data type and the collection | | 4 | Select the type as
"Forces at nodes" | | 5 | Define the export file name
"IkerMAQ_ToothForce_Node_X" | | 6 | Click on [OK] | 🖟 New Export data to OptiStruct - Data collection export Export data to OptiStruct General Advanced Forces (frequency-evolution) Data type to export DATAEXPORT_TOOTHFORCE_NODES_FFT_3 - Flux 2D project: post-processing - Create data export for each speed - Flux 2D project: post-processing - Create data export for each speed - Global forces 50 | Step | Action | |------|---| | 1 | Click on [Data export] –
[Export to OptiStruct] – [New] | | 2 | Define the data export name
"DataExport_ToothForce_Global
_FFT_X" | | 3 | Define the data type and the collection | | 4 | Select the type as "Global forces (RBE3)" | | 5 | Define the export file name
"IkerMAQ_ToothForce_Global_X" | | 6 | Click on [OK] | 🖟 New Export data to OptiStruct - Data collection export Export data to OptiStruct General Advanced Forces (frequency-evolution) Data type to export- DATAEXPORT_TOOTHFORCE_GLOBAL_FFT_3 - Flux 2D project: post-processing - Create data export for each speed - Global forces - Flux 2D project: post-processing - Close the I/O context | Step | Action | |------|--| | 1 | Click on [Project] – [Close the Input/Output data context] | - Flux 2D project: post-processing - Close the project - Flux 2D project: post-processing - Export the force per tooth # IV. VIBRATION ANALYSIS IN SIMLAB SimLab modeling process - SimLab project: initiation - Windows view configuration | Step | Action | |------|--| | 1 | Open the software SimLab | | 2 | Click on [View], select
"Model Browser",
"Selection List" and
"Output Window" | - SimLab project: initiation - Import motor geometry (.STEP file) | Step | Action | |------|---| | 1 | Click on [File] – [Import]
– [CAD] | | 2 | Select the file "IKERMAQ_STATOR_HOU SING_NO_WINDING.STEP" in the folder "~/ForceExportMultiSpeed /SimLab/Geom", click on [Open] | | 3 | Verify the import setting, and click on [OK] | - SimLab project: initiation - Import motor geometry (.STEP file) - SimLab project: initiation - Motor geometry modification | Step | Action | |------|---| | 1 | Right click on the component "1", and click on [Delete] | | 2 | Click on [Yes] | SimLab project: meshing Create Mesh Control for stator | Step | Action | |------|--| | 1 | In the [Mesh] ribbon,
click on [Mesh Control]
icon | | 2 | Define the mesh control parameters | | 3 | Select the body stator | | 4 | Click on [OK] | | Name | Body_Stator | |----------------|--------------------------| | Туре | Body | | Element type | Tet 10 straight edge | | Body mesh size | Average element size: 10 | - SimLab project: meshing - Create Mesh Control for tooth face | Step | Action | |-------------------------------------|--| | 1 | In the [Mesh] ribbon,
click on [Mesh Control]
icon | | 2 | Define the mesh control parameters | | 3 | Select all the 45 tooth faces | | 4 | Click on [OK] | | Name | IsoLine_Tooth | | Туре | IsoLine | | Element si | ze 10 | | Number of
elements
along circ | 2 | SimLab project: meshing · Create volume mesh | Step | Action | |------|---| | 1 | In the [Mesh] ribbon, click on [Volume Mesh] icon | | 2 | Verify the volume mesh parameters | | 3 | Click on [OK] | - SimLab project: meshing - Create volume mesh - · SimLab project: meshing - Save the Data Base - SimLab project: material update - Update predefined material properties | Step | Action | |------|---| | 1 | Click on the [Property]
tab of the Model
Browser | | 2 | Double click on the material "Steel", update the material properties. | SimLab project: property STATOR | Step | Action | |------|--| | 1 | In the [Analysis] ribbon, click on [Property] icon | | 2 | Create the Property "Stator", select the material as "Steel", and assign to the "STATOR" region. | | 3 | Click on [OK] | - SimLab project: magnetic force definition - · Import magnetic force data | Step | Action | |------|---| | 1 | In [Model Browser], click
on the [Loads and
Constraints] tab | | 2 | Right click on the [Loads and Constraints] and click on [Import Flux Bulk Data] | | 3 | Select one of the force data files in the folder ~\ForceExportMultiSpeed\ SimLab\ForceData, and click on [Open] | - SimLab project: magnetic force definition - · Delete other load cases | Step | Action | |------|--| | 1 | Select the following two load cases¹: - First component dynamic load case - Second component dynamic load case | | 2 | Right click and click on [Delete] | ¹ if the force file is generated by Flux 2020, there will be a third component, which is also to be deleted. - SimLab project: magnetic force definition - Modify load setting: SL_NormalMode_LC | Step | Action | |------|--| | 1 | Double click on the load case "Loadcase Parameters" for the first LoadCase | | 2 | Modify the setting in the
"Normal Mode
Extraction Parameters
(EIGRL/EIGRA)", and
click on OK | - SimLab project: magnetic force definition - · Modify load setting: Global dynamic load case | Step | Action | |------|--| | 1 | Double click on the load case "Loadcase Parameters" for the second LoadCase | | 2 | Modify the setting in the
"Normal Mode
Extraction Parameters
(EIGRL/EIGRA)", and
click on OK | - SimLab project: node set - Define node set | Step | Action | |------|--| | 1 | In the [Analysis] ribbon, click on icon [Sets] | | 2 | Select all the outer faces of the Stator body. | | 3 | Define the name of the sets and click on [OK] | SimLab project: solver setting Define solver settings | Step | Action | |------|---| | 1 | In the [Loads and
Constraints] tab, double
click on the [Solution
Parameters] | | 2 | Select "No" for the option "Check Element Quality" in the "Solution Control Parameters" tab | | 3 | Verify the force information (Bulk Data) in the "Include Files" tab | | 4 | Click on [OK] | SimLab project: solver setting Define output requests | Step | Action | |------|--| | 1 | In the [Analysis] ribbon,
click on the icon
[Output Requests] | | 2 | In the [Output
Parameters] tab, modify
the setting for different
parameters | | 3 | Click on [OK] | - SimLab project: export and solve - · Save the Data Base - SimLab project: export and solve - Export the OptiStruct project Result visualization | Step | Action | |------|------------------------------| | 1 | Open the generated .mvw file | ☐ | ☑ ☐ 〒 | OptiStruct Pin to Quick Copy Paste Clipboard hwsolver.mesq access This PC 3D Objects Documents Downloads Desktop Music Pictures Videos System (C:) Network A Storage (E:) 15 items 1 item selected 1,58 KB - Result visualization - Eigen modes | Step | Action | |------|--| | 1 | Select the [Subcase 1],
and select the mode to
be visualized | | 2 | Click on the icon 🗾 | | 3 | Click on [Apply] | - Result visualization - ERP (equivalent radiated power) curve | Step | Action | |------|--| | 1 | Click on [NVH] –
[Radiated Sound] | | 2 | Click on the icon to open the result file, and click on [Load] | | 3 | Select [Subcase 2] | | 4 | Click on [Load Response] | - Result visualization - ERP (equivalent radiated power) curve # V. CONCLUSION #### CONCLUSION - Altair HyperWorks provide a convenient analysis process for the vibration problem of electric motors. - Flux is used as the solver for electromagnetic problems. - Magnetic forces at multispeed point are computed in the mechanical I/O context in Flux. - OptiStruct is used as the solver for mechanical problems. - SimLab is used for modeling the device. # **THANK YOU** altair.com #ONLYFORWARD