Interaction between a magnetized needle and the Earth's magnetic field

Presentation

Program	Dimension	Physics	Application	Work area
Flux	2D	Magnetic	Transient	Rotating actuators

General remarks

Study of the interaction between a magnetized needle and the Earth's magnetic field.

This example represents a first step in rotating machines modelling.

Objective

Computation of the needle's position against the Earth's North (= magnetic south).

The parameter the user can change is:

Needle initial position (POS_INIT)

Properties

Illustration		Main characteristics	
NORTH → 0°			
WEST → 90 ° SOUTH → 180 °	EAST → - 90°	 Earth's magnetic field = 50μT The compass needle is considered as a magnet with: Relative permeability: μr = 100 Remanent induction : Br = 0.1T Compass initial position: POS_INIT = 90 ° Needle's moment of inertia = 1E⁻⁷ kg.m² Viscous friction coefficient = 0.45E⁻⁷ N.m.s/radian 	

Results

Angle position variation of the magnetized needle

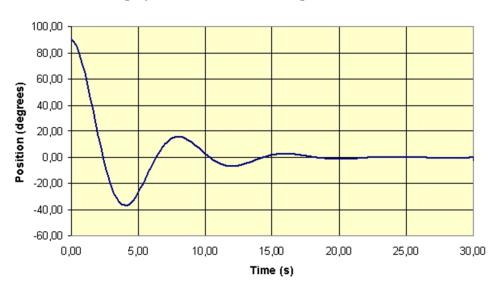


Figure 1: Evolution of the needle's angle position according to time

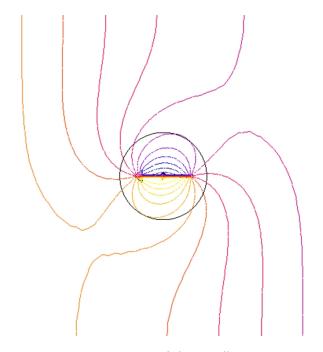


Figure 2: Position of the needle = 90 °

To go further:

- Position of a compass subjected to a magnetic field created by a conductor
- Consider multiple compass in the same example etc.

