Non Destructive Testing: Characterization of a crack with the measurement of an electric resistance

2D Textbook Case Summary

Program	Dimension	Physics	Application	Work area
Flux	2D	Electric	Kinetic	NDT

Characterization of the geometry of a crack with the measurement of an electric resistance. This example shows how to use one of the existing Non Destructive Testing methods (NDT by conduction or by current injection).

Objective: Computation of the electric resistance of a cracked component. The parameters the user can change are:

- crack's width (CW)
- crack's height (CH)
- resistivity of the component's material (RHO)

Theoretical reminders

Analytical computation of elementary electric resistances of components shaped as parallelepipeds or prisms.

$$dR = \frac{\rho \times dl}{S(h)}$$

Results

Figure 1: Flow of current at rated working point

Figure 2: Equipotential lines at rated working point

Figure 3: Electric resistance's (R) evolution as a function of the crack's height (CH) (the other parameters are rated)

To go further:

- Similar study, but with a stiff current density
- Similar analysis for more complex 3D type devices etc.

Model in Flux

Domain

Dimension	2D	Depth	L
Length unit.	mm	Angle unit.	degrees

Geometry / Mesh

Mesh 2 nd order type	Number of nodes	4633	
---------------------------------	-----------------	------	--

Input Parameters

Name	Туре	Description	Rated value
L	Geometrical	Material length	40 mm
W	Geometrical	Material width	100 mm
Н	Geometrical	Material height	50 mm
СН	Geometrical	Crack height	45 mm
CW	Geometrical	Crack width	5 mm
RHO	Physical	Material resistivity	1.7 E ⁻⁸ W.m
V	Physical	Potential difference	1 V

Material Base

NAME	MATERIAL
B(H) model	-
Magnetic property	-
J(H) model	Isotropic resistivity
Electrical property	RHO
D(E) model	-
Dielectric property	-
K(T) model	-
K(T) characteristics	-
RCP(T) model	-
RCP(T) characteristics	-

Regions

NAME	COMPONENT	UV	LV
Nature	Surface region	Line region	Line region
Туре	Conductive region	Stiff electric potential	Stiff electric potential
Material	MATERIAL	-	-
Mechanical Set	-	-	-
Corresponding circuit component	-	-	-
Electrical characteristics	-	V	0
Current source	-	-	-
Thermal characteristics	-	-	-
Possible thermal source	-	-	-

Solving process options

Type of linear system solver	Automatically chosen	Parameters	Automatically defined
------------------------------	----------------------	------------	-----------------------

Type of non-	Newton	Precision	0.0001	Nb iterations	100
linear system solver	Raphson	Method for computing the relaxation factor		Automatically chosen	

Solving

Scenario	Name of parameter	Controllable parameter	Variation method	Interval definition	Step selection
SCENARIO	СН	Geometrical	Step value	5 mm to 45 mm	5 mm

Annex

Analytical computation of the resistance

Maxwell equation: E=-gradV

Ohm's Law: $J = \sigma E$

Resistance computation: $dR = \rho \times \frac{dh}{S(h)}$

General remarks

The analytical method consists of calculating the values of elementary electric resistances of components described as parallelepipeds (model 1) or parallelepipeds + prisms (model 2). The elementary resistances are then connected in series and a global equivalent resistance can be calculated.

Model 1 :

With: R=R1+R2+R3

$$R1 = R3 = \rho \times \frac{W - CW}{2 \times H \times L}$$
$$R2 = \rho \times \frac{CW}{(H - CH) \times L}$$

Model 2

With: R=R1+R2+R3

$$R1 = R3 = \rho \times \frac{CW}{2 \times L \times (H - CH)} R2 = \rho \times \frac{W - CW}{L \times CH} \times \ln\left(\frac{H}{H - CH}\right)$$

Notations and symbols

Name	Description	Unit
R	Material resistance	Ω
ρ	Material resistivity	Ω.m
Н	Material height	m
L	Material length	m
W	Material width	m
СН	Crack height	m
CW	Crack width	m

Numerical applications

R computation

Let's calculate the value of the electric resistance with different methods when component parameters are the following:

- Potential difference V = 1 V
- Component dimensions: W x H x L = 100 mm x 50 mm x 40 mm
- Material resistivity (copper): RHO = 1.7 $E^{-8}\Omega$.m
- Crack width : CW = 5 mm
- Crack height : CH = 45 mm

Computation with method 1

$$R1 = R3 = \rho \times \frac{W - CW}{2 \times H \times L} = 1.7 \times 10^{-8} \times \frac{(100 - 5) \times 10^{-3}}{2 \times 50 \times 40 \times 10^{-6}} = 403n\Omega$$

Altair Flux[™] - 2D Example Summary: Non Destructive Testing: characterization of a crack with the measurement of an electric resistance Annex

$$R2 = \rho \times \frac{CW}{(H - CH) \times L} = 1.7 \times 10^{-8} \times \frac{5 \times 10^{-3}}{(50 - 45) \times 40 \times 10^{-6}} = 425n\Omega$$
$$R = R1 + R2 + R3 = 1.23\mu\Omega$$

Computation with method 2

$$R1 = R3 = \rho \times \frac{CW}{2 \times L \times (H - CH)} = 1.7 \times 10^{-8} \times \frac{5 \times 10^{-3}}{2 \times 40 \times (50 - 45) \times 10^{-6}} = 212n\Omega$$

$$R2 = \rho \times \frac{W - CW}{L \times CH} \times ln \left(\frac{H}{H - CH}\right) = 1.7 \times 10^{-8} \times \frac{95 \times 10^{-3}}{40 \times 45 \times 10^{-6}} \times ln \left(\frac{50}{5}\right) = 2.06\mu\Omega$$

$$R = R1 + R2 + R3 = 2.46\mu\Omega$$

Result obtained with Flux

At this working point, Flux calculates a resistance of $R=2.46\mu\Omega$