Magnetic induction B created by a solenoid

2D Textbook Case Summary

Program	Dimension	Physics	Application	Work area
Flux	2D - axi	Magnetic	Static	Magnetic

Study of the magnetic induction field radiated by a solenoid. This example shows how to estimate the impact of the field radiated by a solenoid on its environment (EMC type application).

Objective

Use of the magnetic induction N at a point M (0,y) located on the Y-axis. The parameters the user can change are:

- Solenoid number of spires (N)
- · Current (I) injected in the solenoid

Theoretical reminders

Analytical computation of the B variation on the solenoid considering different parameters:

If M (0, y) is inside the solenoid:
$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times \left[\cos\left(\varphi 1\right) + \cos\left(\varphi 2\right)\right]$$

If M (0, y) is outside the solenoid:
$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times [\cos(\varphi 2) - \cos(\varphi 1)]$$

Illustration	Main characteristics	
M(0,y) is outside the solenoid M(0,y) is inside the solenoid y M(0,y) is inside the solenoid X M(0,y) is inside the solenoid X X X X X X X X X X X X X	 Copper conductor rated diameter: WD = 1 mm Solenoid rated radius SR = 10 mm Rated number of spires N = 80 Rated injected current I = 10 A 	

Results

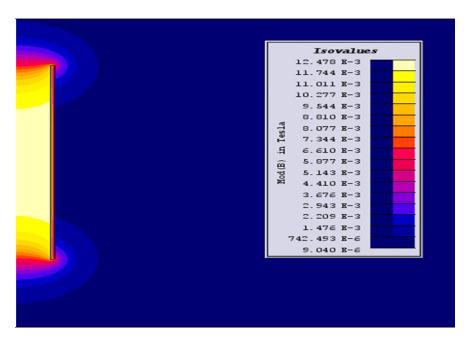


Figure 1: Distribution of the magnetic flux surface density (B in Tesla)

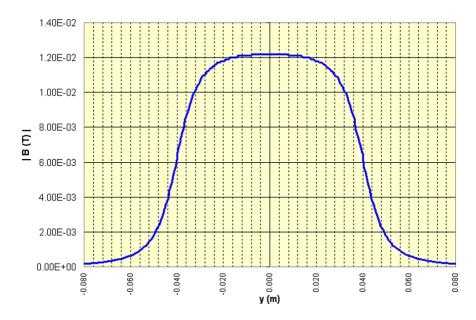


Figure 2: Magnetic induction B along the Y-axis

To go further:

- Study of the magnetic field created by a coil solenoid around a magnetic core
- Similar analysis in steady AC magnetic or transient magnetic

Model in Flux

Domain

Dimension	2D	Depth	axi
Length unit.	mm	Angle unit.	degrees

Infinite Box		Disk
Size	In. radius: 100	Out. Radius :135

Symmetry 1 symmetry SymmetryYaxis_1 : Symmetry on the Y-axis – H tangent	Symmetry	1 symmetry	SymmetryYaxis_1 : Symmetry on the Y-axis - H tangent	
--	----------	------------	--	--

Application	Magnetostatic	
-------------	---------------	--

Geometry / Mesh

Full model in the FLUX environment	Mesh
PATH COIL AIR	

Mesh 2 nd order type	Number of nodes	4718
---------------------------------	-----------------	------

Input Parameters

Name	Туре	Description	Rated value
N	Geometrical	Number of spires	80
SR	Geometrical	Solenoid radius	10 mm
WD	Geometrical	Conductor wire radius	1 mm
I	Physical	Current intensity	10 A

Regions

NAME	AIR	WIRE	INFINITE
Nature	Surface density	Surface density	Surface density
Туре	Air region or vacuum	Coil conductor type region	Air region or vacuum
Material	-	-	-
Mechanical Set	-	-	-
Corresponding circuit component	-	COILCONDUCTOR	-
Electrical characteristics	-	N spires	-
Current source	-	-	-
Thermal characteristics	-	-	-
Possible thermal source	-	-	-

Electrical circuit

Component	Туре	Characteristics	Associated Region
COILCONDUCTOR	Coil conductor	Stiff current (A): I	WIRE

Solving process options

Type of linear system solver	Automatically chosen	Parameters	Automatically defined	
------------------------------	----------------------	------------	-----------------------	--

Type of non-linear system solver	Newton Raphson	Precision	0.0001	Nb iterations	100
		Method for computing the relaxation factor		Automatically determined method	

Solving

Scenario	Name of parameter	Controllable parameter	Variation method	Interval definition	Step selection
REFERENCEVALUES	-	-	-	-	-

Annex

Theoretical reminders Computation of the magnetic induction B

Maxwell equation: $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$

Biot & Savart Law:
$$d\vec{B} = \frac{\mu_0 I d\vec{l}}{4\pi r^2}$$

Final equations:

If M (0, y) is inside the solenoid:
$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times \left[\cos(\varphi 1) + \cos(\varphi 2)\right]$$

If M (0, y) is outside the solenoid:
$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times [\cos(\varphi 2) - \cos(\varphi 1)]$$

Notations and symbols

Symbol	Description	Unit
В	Magnetic induction field	Т
Н	Magnetic field	A/m
μ_0	Absolute permeability of vacuum $\mu_0 = 4 \times \pi \times 10^{-7}$	H/m
J	Current surface density	A/m²
I	Current injected in the conductor	Α
N	Number of spires	
WD	Copper wire diameter	m

Numerical applications

Case study

Let's consider a solenoid made of N=80 spires in which we inject a current I=10A. The solenoid radius is SR=10 mm and the spire diameter is WD=1mm.

Solenoid length = $N \times WD = 80 \text{ mm}$

• Computation of the magnetic induction variation at a point located on the axis, at one of the solenoid ends (y = 40 mm compared to the solenoid centre):

$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times \left[\cos(\varphi 1')\right]$$

$$|B| = \frac{4 \times \pi \times 10^{-7} \times 10}{2 \times 10^{-3}} \times \frac{80 \times 10^{-3}}{\sqrt{\left(80 \times 10^{-3}\right)^2 + \left(10 \times 10^{-3}\right)^2}} \approx 6.23mT$$

 Computation of the magnetic induction variation on the solenoid axis at a 80 mm distance of its centre (outside the solenoid):

$$|B| = \frac{\mu_0 \times I}{2 \times WD} \times [\cos(\varphi 2) - \cos(\varphi 1)]$$

$$|B| = 6.28 \times 10^{-3} \times \left(\frac{4 \times 10^{-3}}{\left(40 \times 10^{-3}\right)^2 + \left(10 \times 10^{-3}\right)^2} \times \frac{\left(80 + 40\right) \times 10^{-3}}{\sqrt{\left(120 \times 10^{-3}\right)^2 + \left(10 \times 10^{-3}\right)^2}} \right) \approx 166 \mu T$$