## Calculation of the interaction between a OV potential sphere and a point electric charge

2D Textbook Case Summary

| Program | Dimension | Physics  | Application | Work     |
|---------|-----------|----------|-------------|----------|
| Flux    | 2D - axi  | Electric | Static      | Electric |

Analysis of the force induced by an empty sphere with a 0V potential on a point charge containing N elementary charges. This study underlines the electrostatic force existing between 2 elements.

### Objective

Exploitation of the value of the electrostatic force induced by the sphere on a point charge. The parameters which can vary are:

- The sphere radius (R\_SPHERE)
- The distance (DIST\_A) between the sphere centre and the punctual charge
- The number of elementary charges (N) contained in the point charge

### **Theoretical reminders**

Analytical calculation of the attractive force induced by the sphere on the point charge:

$$F = \frac{1}{4 \times \pi \times \varepsilon_0} \times N^2 \times q^2 \times \frac{R\_SPHERE \times DIST\_A}{\left(DIST\_A^2 - R\_SPHERE^2\right)^2}$$

| Illustration       | Main characteristics                                                                                                                                                                                                                                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIST_A<br>R_SPHERE | <ul> <li>Point charge value: N x q, with q = 1.6 E-19 C and rated N = 20</li> <li>Rated distance (DIST_A) between the sphere centre and the point charge = 0.8 mm</li> <li>Rated radius of the sphere: R_SPHERE = 0.3 mm</li> <li>Relative permittivity of vacuum: ε<sub>0</sub> = 8.85 E-12 F/m</li> </ul> |



# Results



Figure 1: Force value in function of the distance DIST\_A (other parameters are rated)

### To go further:

- Replace the point region by a second sphere and vice-versa
- Study the distribution of the electric field
- Calculate the force between the 2 armatures of a capacity



# **Model in Flux**

### Domain

| Dimension   | 2D | Depth      | Axi     |
|-------------|----|------------|---------|
| Length unit | mm | Angle unit | Degrees |

| « infinite » box | Disk        |            |
|------------------|-------------|------------|
| Dimensions       | Rint : 2 mm | Rext: 3 mm |

| Symmetry | 1 symmetry | symmetryYaxis_1 : No active physical symmetry |
|----------|------------|-----------------------------------------------|
|          |            |                                               |

| Physical application | Electrostatic                       |
|----------------------|-------------------------------------|
| Property             | Electric potential at infinite: 0 V |

### **Geometry / Mesh**





| Mesh | 2 <sup>nd</sup> order type | Number of nodes | 3724 |
|------|----------------------------|-----------------|------|
|------|----------------------------|-----------------|------|

### **Entry parameters**

| Name     | Туре        | Description                                             | Rated<br>value |
|----------|-------------|---------------------------------------------------------|----------------|
| R_SPHERE | Geometrical | Sphere radius                                           | 0.3 mm         |
| DIST_A   | Geometrical | Distance between the sphere centre and the point charge | 0.8 mm         |
| Ν        | Physical    | Number of elementary charges considered                 | 1              |

### Regions

| NAME                            | AIR                     | INFINITE                | POINT                                             | SPHERE                      |
|---------------------------------|-------------------------|-------------------------|---------------------------------------------------|-----------------------------|
| Nature                          | Surface region          | Surface region          | Punctual                                          | Line region                 |
| Туре                            | Air or vacuum<br>region | Air or vacuum<br>region | Region with charge<br>given by its total<br>value | Stiff electric<br>potential |
| Associated material             | -                       | -                       | -                                                 | -                           |
| Mechanical set                  | -                       | -                       | -                                                 | -                           |
| Component<br>associated circuit | -                       | -                       | -                                                 | -                           |
| Electrical characteristics      | -                       | -                       | Qtot = N x 1.6<br>E-19 C                          | 0 V                         |
| Current source                  | -                       | -                       | -                                                 | -                           |
| Thermal characteristics         | -                       | -                       | -                                                 | -                           |
| Potential thermal source        | -                       | -                       | -                                                 | -                           |

p.4

### Altair Flux<sup>™</sup> - 2D Example Summary: Calculation of the interaction between a 0V potential sphere and a point electric charge Model in Flux

### p.5

### **Resolution parameters**

| Type of solver |
|----------------|
|----------------|

| Type of solver     | Newton  | Precision                     | 0.0001                          | Max. number of itérations | 100                |
|--------------------|---------|-------------------------------|---------------------------------|---------------------------|--------------------|
| Non linear systems | Raphson | Method of c<br>the relaxation | alculation of<br>on coefficient | Authom<br>specified       | atically<br>method |

#### Resolution

| Scenario        | Name of parameter | Type of configuration | Variation<br>method | Variation<br>scale | Selection of the steps |
|-----------------|-------------------|-----------------------|---------------------|--------------------|------------------------|
| REFERENCEVALUES | -                 | -                     | -                   | -                  | -                      |



# Annex

### Theoretical reminders Calculation of the force

General electrostatic equation:  $\varepsilon \cdot \Delta V = -\rho$ 

Calculation of the attractive force exerted by the sphere on the point charge:

$$F = \frac{1}{4 \times \pi \times \varepsilon_0} \times N^2 \times q^2 \times \frac{R\_SPHERE \times DIST\_A}{\left(DIST\_A^2 - R\_SPHERE^2\right)^2}$$

### **Notation and symbols**

| Symbol          | Description                                                          | Unit |
|-----------------|----------------------------------------------------------------------|------|
| F               | Force exerted by the sphere on the point charge                      | Ν    |
| $\varepsilon_0$ | Absolute permittivity of vacuum $\varepsilon_0 \approx 8.85 E^{-12}$ | F/m  |
| DIST_A          | Distance between the sphere centre and the point charge              | m    |
| R_SPHERE        | Sphere radius                                                        | m    |
| Ν               | Number of elementary charges constituting the point charge           |      |
| q               | Elementary charge $q = 1.6E^{-19}$                                   | С    |

### **Numerical applications**

### Calculation of the force F for a given point

Let's calculate the value of the attractive force exerted by the sphere on the point charge while the parameters are the following:

- Number of elementary charges constituting the point charge: N = 20
- Distance between the sphere centre and the point charge:  $DIST_A = 0.8 \text{ mm}$
- Rated radius of the sphere: R\_SPHERE = 0.3 mm

$$F = \frac{1}{4 \times \pi \times \varepsilon_0} \times N^2 \times q^2 \times \frac{R\_SPHERE \times DIST\_A}{\left(DIST\_A^2 - R\_SPHERE^2\right)^2}$$

$$F = \frac{1}{4 \times \pi \times 8.85 \times 10^{-12}} \times 20^2 \times (1.6 \times 10^{-19})^2 \times \frac{0.3 \times 0.8 \times 10^{-6}}{(0.8 - 0.3)^2 \times 10^{-6}}$$

 $F = 7.30 \times 10^{-20} N$ 



p.7