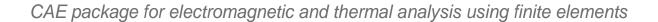

Altair® Flux®


Induction motor tutorial

2D technical example

Proprietary Information of Altair Engineering

Altair $^{\text{\tiny (B)}}$ Flux $^{\text{\tiny (B)}}$ is a registered trademark.

Copyright © 1983 – 2022 Altair Engineering, Inc.

This tutorial was edited on 4 November 2022

Altair

15 Chemin de Malacher - Inovallée 38246 Meylan Cedex FRANCE

Phone: +33 (0)4 76 90 50 45 Fax: +33 (0)4 56 38 08 30

Web: http://www.altair.com

Foreword

*(Please read before starting this document)

Description of the example

The goal of this technical example is to demonstrate the ability and advantage of Flux for the simulation of brushless induction motor computation problems. This document contains the general steps and all the data needed to describe the different simulations.

To begin

This example is designed for the user who is already familiar with the basic functions of Flux software.

For beginner users, please report to the "welcome interface" opened automatically by the supervisor. (If not opened, please open it by clicking on the button "?" on the top right of the supervisor). The interface contains videos, which helps the beginners while using Flux for the first time.

Support files included...

To view the completed phases of the example project, the user will find the .py files, including the geometry, physics and postprocessing descriptions. The .py files corresponding to the different study cases in this example are available in the folder:

...\DocExamples\Examples2D\Technical_InductionMotor_1\
Supplied files are command files written in Pyflux language. The user can launch them in order to automatically produce the Flux projects for each case.

(.py files are launched by accessing **Project/Command file from the Flux drop down menu.)

Supplied files		Contents	.FLU file obtained after launching the .py file
	buildGeomesh.py	Geometry and mesh	Geomeshbuilt.FLU
CASE1	buildPhys.py	physics	BuiltPhys.FLU
CASEI	solving.py	Solving process	Solved.FLU
	postprocessing.py	Post processing	Postprocessed.FLU
	TestCase_INI.FLU	Initial Flux project	-
CASE2	solving.py	Solving process	Solved.FLU
	postprocessing.py	Post processing	Postprocessed.FLU
	TestCase_INI.FLU	Initial Flux project	-
CASE3	buildPhys.py	physics	BuiltPhys.FLU
CASES	solving.py	Solving process	Solved.FLU
	postprocessing.py	Post processing	Postprocessed.FLU

	TestCase_INI.FLU	Initial Flux project	-
CASE4	buildPhys.py	physics	BuiltPhys.FLU
CASE4	solving.py	Solving process	Solved.FLU
	postprocessing.py	Post processing	Postprocessed.FLU
	TestCase_INI.FLU	Initial Flux project	-
CASE5	buildPhys.py	physics	BuiltPhys.FLU
CASES	solving.py	Solving process	Solved.FLU
	postprocessing.py	Post processing	Postprocessed.FLU

Note: Some directories may contain a main.py which enables command files launching.

Table of Contents

Та	ble o	f Conte	ents	Α
1.	Gene	eral infor	mation	1
	1.1.	Overviev 1.1.1. 1.1.2.	w Description of the studied device Studied cases	4
	1.2.	Strategy	to build the Flux project	9
	1.3.	About th 1.3.1. 1.3.2. 1.3.3. 1.3.4.	Motor Template: Presentation	12 13 14
2.	Geor	netry an	d mesh description of the motor	. 17
	2.1.		e IM overlay	
	2.2.		an induction motor using the overlay	
	2.3.		e device	
3.	Case	1: Dete	rmination of initial rotor position	. 24
	3.1.		Physical description	
		3.1.1.	Define the physical application	27
		3.1.2.	Create materials	
		3.1.3. 3.1.4.	Create I/O Parameters Create mechanical sets	
		3.1.5.	Create a circuit	
		3.1.6.	Modify a circuit	32
		3.1.7.	Modify face regions	
		3.1.8. 3.1.9.	Modify face regions	
		3.1.9.	Modify face regions	
	3.2.		Solve the project	
	3.3.		Results post-processing	
	0.0.	3.3.1.	2D Curve of the electromagnetic torque	
		3.3.2.	2D Curve of the currents	42
4.			characteristics versus slip	
			Solve the project	
	4.2.		Results post-processing	
		4.2.1. 4.2.2.	Load and run a macro to calculate the iron losses Create a sensor	
		4.2.3.	Create I/O Parameters	
		4.2.4.	2D Curve of the power balance	
		4.2.5.	2D Curve of the efficiency	
		4.2.6.	Compute efficiency	
		4.2.7. 4.2.8.	Steady state rated-load characteristics	
		4.2.9.	Display isovalues	
		4.2.10.	Display isovalues	
		4.2.11.	2D Curve of the electromagnetic torque	
		4.2.12.	Define the transient initialization	
5.		•	valent electric circuit	
	5.1.	Case 3: 5.1.1.	Physical description	
		5.1.1. 5.1.2.	Modify voltage sources	
	5.2.		Solve the project	

	5.3.	Case 3:	Results post-processing	. 71
		5.3.1.	Create I/O Parameters (CASE3)	
		5.3.2.	2D Curve of the current (CASE3)	. 73
		5.3.3.	2D Curve of the active power (CASE3)	. 74
		5.3.4.	2D Curve of the joule losses in stator core (CASE 3)	. 75
		5.3.5.	Display isovalues (CASE 3)	
		5.3.6.	Display isovalues (CASE 3)	
		5.3.7.	Computation of no-load currents (CASE 2)	
		5.3.8.	Computation of iron losses in stator core (CASE2)	
		5.3.9.	Display isolines (CASE2)	
		5.3.10.	Display isovalues (CASE2)	. 82
		5.3.11.	Computation of equivalent electric circuit parameters	. 83
6.	Case	4: Tran	sient simulation for rated speed	84
	6.1.	Case 4:	Physical description	. 86
		6.1.1.	Define the physical application	. 87
		6.1.2.	Modify mechanical sets	
		6.1.3.	Create a circuit	
		6.1.4.	Modify a circuit	
		6.1.5.	Modify face regions	
		6.1.6.	Modify face regions	
		6.1.7.	Modify face regions	
		6.1.8.	Modify face regions	
	6.2.		Solving process	
	6.3.	Case 4:	Results post-processing	
		6.3.1.	2D curve of the electromagnetic torque versus time	. 99
		6.3.2.	2D curve of the current bar rotor	
		6.3.3.	2D curve of the stator current	101
7.	Case	5: Real	working conditions	102
	7.1.	Case 5:	Physical description	104
		7.1.1.	Modify the physical application	105
		7.1.2.	Create I/O Parameters	106
		7.1.3.	Modify mechanical set	107
		7.1.4.	Modify face regions	108
		7.1.5.	Modify a circuit	109
	7.2.	Case 5:	Solving process	110
	7.3.	Case 5:	Results post-processing	112
		7.3.1.	Plot a 2D Curve of the phase current	113
		7.3.2.	Plot a 2D Curve of the speed	
		7.3.3.	Plot a 2D Curve of the torque	115

1. General information

Introduction

The goal of this technical tutorial is to demonstrate the ability and advantage of Flux in the simulation of induction motor computation problems.

This chapter presents the studied device, (an induction machine) and explains the strategies used for geometry construction and mesh generation.

Contents

This chapter contains the following topics:

Topic	See Page
Overview	1
Strategy to build the Flux project	9
About the Overlay (motor template)	11

1.1. Overview

Introduction

This section presents the studied device, an induction motor, and the strategy of the device description in Flux.

Contents

This section contains the following topics:

Topic	See Page
Description of the studied device	4
Studied cases	7

1.1.1. Description of the studied device

Foreword

This paragraph is a summary of cases treated in detail in the 2D example: "Induction motor technical paper".

The files relating to the studied cases are available in the documentation directory of the Flux DVD.

Studied device

The studied device is a 2-pole induction motor, 3-phase star connected, *Figure* 1-1, characterized by:

- rated-load power, $P_n = 7.5 \text{ kW}$;
- rated source voltage, $U_{nf} = 380 \text{ V}$ (phase to null value);
- rated source frequency, $f_{1n} = 50 \text{ Hz}$.

Figure 1-1: View of the induction motor to be modelled

Motor main characteristics

This motor has the following main characteristics:

- The stator armature has 24 slots.
- Figure 1-2, and the rotor armature has 20 slots.
- The outer diameter of the stator magnetic core is 212 mm.
- The inner diameter of the stator is 120 mm.
- The outer diameter of the rotor is 119 mm; the air-gap thickness is 0.5 mm.
- The inner diameter of the rotor magnetic core is 40 mm.
- The length of the stator and rotor magnetic cores is 125 mm.

Continued on next page

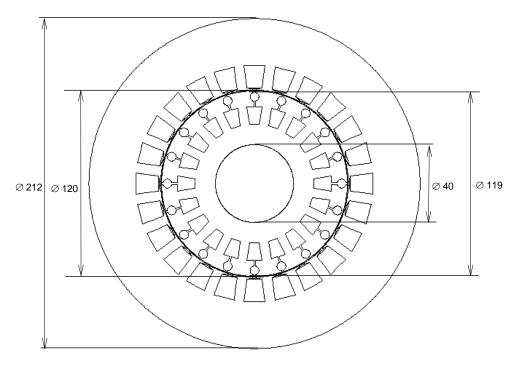


Figure 1-2: Cross-section of the stator and rotor armatures

The shape and dimensions of the stator and rotor slots are shown in Figure 1-3.

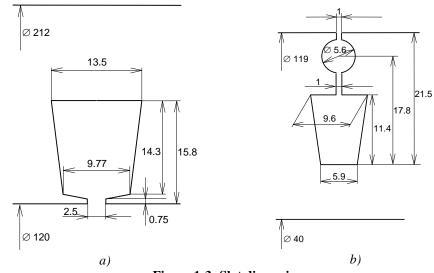


Figure 1-3: Slot dimensions a) stator slot; b) rotor slot

Continued on next page

The stator winding is a two-layer copper winding, Figure 1-4, with shortened step of 8/12 and $w_1 = 208$ turns per phase as shown below.

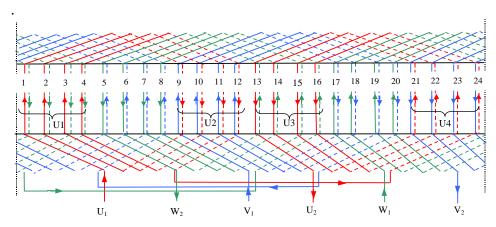


Figure 1-4: Stator winding

The rotor winding is a double squirrel cage and it is made of cast aluminum.

The magneto-harmonic simulations, the transient magnetic simulations for constant rotor speed and the DC braking simulation, consider the values of resistances corresponding to the rated temperature of the motor, 155 °C.

1.1.2. Studied cases

Studied cases

Five cases are carried out using Steady State Magnetic AC and Transient Magnetic applications:

- Case 1: Steady state study, to determine the rotor position.
- Case 2: Steady state study to compute the characteristics of the machine.
- Case 3: Steady state study, to compute the parameters for the equivalent circuit.
- Case 4: Transient study, to simulate the rated conditions.
- Case 5: Transient study, to simulate a single phase short circuit after rated conditions.

Case 1 The first case is a steady state magnetic AC study.

This study is a parameterized magneto-harmonic analysis at different values of rotor position in order to determine the position where torque is equal to average value.

Case 2 The second case is a steady state magnetic AC study.

This study is a parameterized magneto-harmonic analysis with values of rotor slip in order to evaluate the motor characteristics for rated load operation and display torque and current versus slip curves.

Case 3 The third case is a steady state magnetic AC study.

This simulation is a parametric analysis versus voltage in order to get no load current at locked rotor condition. With the previous case, at no load parameter value, it is possible then to obtain the parameters for the equivalent circuit of the machine

Case 4 The fourth case is a transient study.

This study is a transient simulation for rated load, initialized from a previous steady state computation at rated conditions obtained from case 2.

Case 5 The fifth case is a transient study.

The purpose of this simulation is to reproduce real working condition of the motor from the starting to the addition of the rated load and then applying a single phase fault in the stator windings, in order to display main quantities, like speed, torque, current, etc.

1.2. Strategy to build the Flux project

Introduction

This section presents outlines of the geometry building process and mesh generating process of the induction motor.

Stage	Description		
1	Description of the motor	Load an overlay	
1	geometry using an overlay	Modify the overlay	
2	Meshing of the device	• Mesh	

Theoretical aspect

The basic knowledge necessary to describe a motor is provided by utilizing an overlay and is presented in the following section.

1.3. About the Overlay (motor template)

Introduction

This section deals with the **IM** (Induction Machine) **Template** and answers the following three questions:

- What is possible to model with FLUX? (presentation of the object editor, available library)
- How to describe the problem in FLUX? (use the object editor)
- What are the possible links with Speed?

Contents

This section covers the following topics:

Motor Template: Presentation Motor Template: The library

• Motor Template: Principle of description in FLUX

• Motor Object : Speed importation

1.3.1. Motor Template: Presentation

Presentation

The complete description of a motor in FLUX can be somewhat long and involved.

To describe a motor utilizing the standard Flux interface, the user must:

- prepare the tools of geometric description (parameters, coordinate systems, etc.)
- create the points and lines of the rotor and stator (slots, air-gap, etc.)
- build the faces
- mesh the device
- create the regions and assign to faces
- etc.

These different stages must be repeated for each type of motor that is being modeled.

Now it is possible for FLUX to simplify this process, by providing a **library** of predefined **motor templates**.

With this new description mode, the stages of model construction are simplified. The user chooses a type of motor and winding from the library and interactively enters the parameters of the motor.

Motor Object: Definition

An **IM Motor** template is an **object** from the specific library:

• IM (Induction Machine)

This covers information related to geometry and mesh. There is no information about physics.

1.3.2.

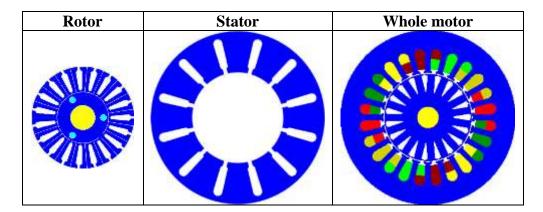
Motor Template: The library

Introduction

The library of Motor objects is a library of induction machines.

The models are standard models. This library corresponds to the one provided in the Speed software.

List of models


The different models in the library are not detailed in the on line help because their documentation is included in the software. An interactive image is displayed in the object editor. The editor displays a direct visualization of the parameters entered by the user.

The list of models provided for the rotor and stator is presented in the table below.

Rotor	Stator
Single Cage	StatorAirGapWdg
Double Cage	StatorFlared
	StatorGH
	StatorGolfTee
	StatorHW
	StatorPllHW
	StatorPIIRound
	StatorPIISlot
	StatorPIISquare
	StatorPIISquareWedged
_	StatorRound
	StatorSquare
	StatorVarDeth

Example

An example of motor template is presented in the figures below.

1.3.3. Motor Template: Principle of description in Flux

General operation

The template editor provided in FLUX is an "assistant to the creation of the model" which is part of the overall construction process of a finite element project. The motor template editor simplifies the stage of the geometry construction and the mesh building as shown in the table below.

Stage	"Standard" description
1	Geometry building
2	Mesh construction
3	Physical properties description
4	Solving process
5	Results post-processing

"Assisted" description
Direct construction of a
meshed motor
Identical

Principle

The user builds the motor directly in FLUX using the template editor and the BPM motor Object library.

The general principle of operation is given in the table below.

Stage	The user provides	FLUX carries out
	Geometric characteristics:	Geometry building:
	 general: units / of stator : shape / dimension /number of slots / 	 creation of parameters, coordinate systems, transformations creation of points, lines, faces
1	• of rotor : shape / dimension / number of poles /	Grouping of the faces in regionscreation of regions : shaft, rotor,
	 Choices for FE modeling: taking periodicities into account influence of eccentricities 	 stator, magnet, air-gap, air assigning of the regions to faces
2	A coefficient to adjust the mesh density (value comprised between 0.5 and 1)	Mesh construction:automatic mesh and linked mesh to faces
3	Winding characteristics:Distribution of the phases in the slots: "standard" winding or particular winding	 Grouping of the faces in regions (continued) Creation of regions corresponding to the coils (grouping by phase) Assigning of the regions to faces

...to continue

The user continues the description of the finite element project in the usual way: description of the physical properties, creation of the mechanical assemblies, description of the electric circuit and importing it into FLUX, solving and post-processing of the results.

1.3.4. Motor Object: Speed importation

Introduction

The Flux/Speed link is created by the introduction in FLUX of an Induction Machine object from the Speed library.

Speed Importation

The user can import a motor described with Speed (Speed file) into FLUX. The Speed/Flux compatibility makes this possible. All the information concerning the geometric characteristics and the winding characteristics are preserved (dimensional parameters*, number of poles, of phases ...).

*The name of the parameters are the same in Speed and Flux

2. Geometry and mesh description of the motor

Geometry description

Mesh generation Physic description

Solving process Result post-processing

New Flux project

The new Flux project is saved under the name GEOMESH.FLU.

Contents

This chapter contains the following topics:

Topic	See Page
Load the IM overlay	18
Create an induction motor using the overlay	19
Mesh the device	23

2.1. Load the IM overlay

Goal First, the geometry and mesh is carried out using an overlay.

Action (1) Close the sketcher context.

Action (2) Load the INDUCTION_MOTORS_V111.PFO overlay from the extension menu.

2.2. Create an induction motor using the overlay

Goal

The geometry of the motor is described using an overlay.

Action

From the data tree, create a **new** Induction motor.

Data (1) The general characteristics of the motor are presented in the tables below.

General description

I anoth unit	Magh dangity	Infinite box		
Length unit	Mesh density	Inner radius	Outer radius	
Millimeter	0.5	110	140	

Airgap description

Air gap	Eccentricities and periodicities	Rotating air gap	Use periodicities
0.5	without eccentricity	2_layers_airgap	yes

Data (2) The characteristics of the rotor are presented in the tables below.

Rotor description

General description

Rotor external radius	Number of poles	Shaft radius	Rotor shift angle
59.5	2	20.0	0.0

Cooling holes

Without cooling holes

Cage: single cage

Bar shape description: type 4b

Width of rotor slot opening	Depth of rotor slot opening	Diameter of rotor bars	Neck width	Tooth width	Depth of the rotor bar	Neck height
1.0	0.9	5.6	1.0	6.0	11.4	3.6

Number of bars

20

Continued on next page

Data (3) The characteristics of the stator are presented in the tables below.

Stator description

Slot shape description: Stator HW

General description

Stator	Stator	Stator	Stator	Stator	Stator	
tooth	tooth	tooth	tooth	tooth	tooth	
height	width	height	width	height	width	FILSO
(h1s)	(w1s)	(h2s)	(w2s)	(h3s)	(w3s)	
0.75	2.5	0.75	9.77	14.3	13.5	0

Slot bottom description

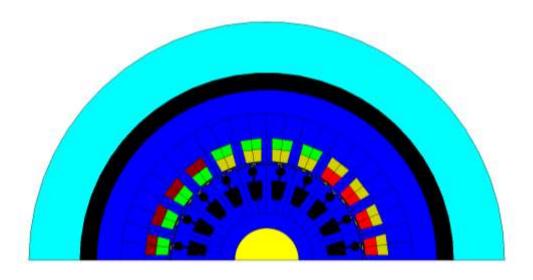
Slot bottom form	Slot bottom fillet radius (FILSB)	
Square	0	

General description

Number of slots	Stator configuration	LamShape	Stator outer radius	Stator angle
24	normal	circle	106	0.0

Data (4) The characteristics of the winding are presented in the tables below.

Winding description

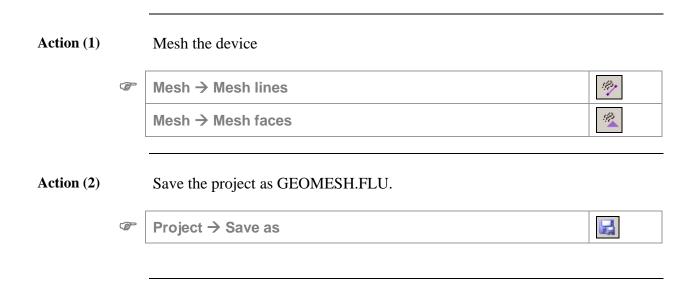

Winding	Number of phases	Classical winding type	Throw	Number of coils per pole per phase	Coils position in slot in case of two layers
Classical winding	3	Lap per pole winding	8	4	superimposed

Continued on next page

Result

The following motor is created with:

- Part of the geometry
- Part of the physics
- Ready to be meshed


Action

Leave the overlay context.

2.3. Mesh the device

3. Case 1: Determination of initial rotor position

Case 1

The Flux2D magneto-harmonic simulations of the induction machine are performed for constant slip values (constant rotor speed values) and are problems that do not consider the rotor motion with respect to the stator. The current frequency in the rotor circuit is set at s·f, where f is the motor supply frequency.

Because the stator and rotor armatures are slotted, the results of magneto-harmonic simulations depend on the relative rotor-stator position. Thus we have to determine the rotor-stator relative position for which the electromagnetic torque is equal to the average value over a cycle of electromagnetic torque variation, when the position of the rotor changes with respect to the stator. This relative position that we consider as "initial position" of the rotor for magneto-harmonic simulations is calculated with respect to the rotor position used in geometry construction.

Starting Flux project

The starting project is the Flux project GEOMESH.FLU. This project contains:

- the geometry description of the device
- the mesh

Project name

The new Flux project is saved under the name of **CASE1.FLU**.

Contents

This chapter contains the following topics:

Topic	See Page
Case 1: Physical description	26
Case 1: Solve the project	38
Case 1: Results post-processing	40

3.1. Case 1: Physical description

Geometry description

Mesh generation

Physic description

Solving process

Result post-processing

Introduction

This section presents the definition of the physical properties – materials and regions of the model.

Contents

This section contains the following topics:

Topic	See Page
Define the physical application	27
Create materials	28
Create mechanical sets	30
Create a circuit	31
Modify a circuit	32
Modify face regions	33
Modify face regions	34
Modify face regions	35
Modify face regions	36

3.1.1. Define the physical application

Goal

The physical application is defined. The required physical application is the Steady State AC Magnetic 2D application.

Data

The characteristics of the application are presented in the table below.

Steady State AC Magnetic 2D application				
Definition				
Frequency [Hz]	2D domain type	Depth of the domain [mm]	Coils Coefficient	
50	2D Plane	125	Automatic coefficient	

P

Application → Define → Magnetic → Steady State AC Magnetic 2D

3.1.2. Create materials

Goal

The creation of "material" entities enables the user to assign physical material properties to face regions.

Data

The following materials are used in this case:

B(H) Isotropic spline saturation				
Name	Field value (A.m ⁻¹)	Flux density value (T)		
	0	0		
	300	0.66		
	500	1.09		
	1000	1.45		
	1500	1.56		
	2000	1.61		
	3000	1.69		
	4000	1.73		
	5000	1.76		
STEEL_NLIN	6000	1.79		
	7000	1.83		
	8000	1.85		
	10000	1.89		
	20000	2.04		
	30000	2.11		
	40000	2.14		
	50000	2.16		
	60000	2.18		
	70000	2.1925		

Type of equivalent B(H) curve: Sine wave flux density

B(H) linear isotropic

Name	Relative permeability	
ALU_HOT	1	

J(E) magnet with electrical properties

	Name	Isotropic resistivity
ſ	ALU HOT	4.8E-8

Physics → Material → New

3.1.3. Create I/O Parameters

Goal

One I/O parameter will be created to define the slip

Data

The characteristics of the I/O parameter controlled via scenario are described in the table below.

I/O	parameters controlled via scenario

Name	Reference value
SLIP	0.01

Parameter/Quantity→ I/O parameter → New

3.1.4. Create mechanical sets

Goal

Two mechanical sets are created to describe the physics of the motor. It will define which is fixed and which part is mobile (in rotation or in translation).

Data (1) The characteristics of the mechanical set ROTOR are presented in the table below:

	Type of	Axis			
Name	Mechanical	Rotation axis	Coordinate	Pivo	t point
	set	Kotation axis	system	First	Second
ROTOR	Rotation around one axis	Rotation around one axis parallel to Oz	XY1	0	0

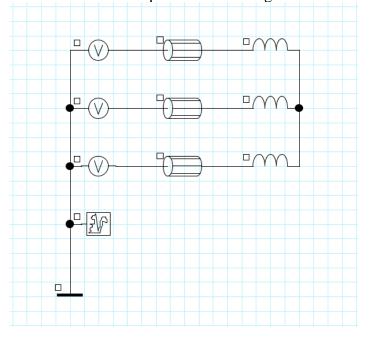
Kinematics		
Type of kinematics Optional value for slip		
Multistatic SLIP		

Physics → Mechanical set → New

Data (2) The characteristics of the mechanical set STATOR are presented in the table below:

Name	Type of Mechanical set	
STATOR	Fixed	

Physics → Mechanical set → New


3.1.5. Create a circuit

Goal

The goal is to define a circuit for this project.

Data (1)

The electric circuit is presented in the figure below.

Physics → Circuit → Circuit editor context

Action

Close the circuit editor context.

Project → Return to standard geometry context

3.1.6. Modify a circuit

Goal

The circuit is modified in order to describe the physics.

Data (1)

The characteristics of the stranded coil conductors are described in the table below.

Name of Stranded coil component	Resistance
B1, B2, B3	$1.54~\Omega$

P

Physics → Electrical components → Stranded coil conductor → Edit

Data (2)

The characteristics of the inductors are described in the table below.

Components	Values
L1, L2, L3	4.04 mH

Physics → Electrical components → Inductor → Edit

Data (3)

The characteristics of the voltage sources are described in the table below.

Components	RMS value	Phase
V1	380 V	0°
V2	380 V	-120°
V3	380 V	120°

(B)

Physics → Electrical components → Voltage source → Edit

Data (4)

The characteristics of the squirrel cage are described in the table below.

Components	Number of bars	R end ring	L end ring
SQUIRRELCAGE_1	10	$1.39\text{E-6}\Omega$	1.06E-8 H

Physics → Electrical components → Squirrel cage → Edit

3.1.7. Modify face regions

Goal Two face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

Name of region	Type of region	Material of region	Mechanical set
STATOR	Magnetic non conducting region	STEEL_NLIN	STATOR
ROTOR	Magnetic non conducting region	STEEL_NLIN	ROTOR

Face region

3.1.8.

Modify face regions

Goal

Eight face regions are modified in order to describe the physics.

Data

The characteristics of the face regions are described in the table below.

T-1	•
насе	region
- 400	1051011

Name of region	Type of region	Mechanical set
INFINITE	Air or vacuum region	STATOR
PRESLOT	Air or vacuum region	STATOR
ROTATING_AIRGAP	Air or vacuum region	STATOR
ROTOR_AIR	Air or vacuum region	ROTOR
ROTOR_PRESLOT	Air or vacuum region	ROTOR
SHAFT	Air or vacuum region	ROTOR
STATOR_AIR	Air or vacuum region	STATOR
WEDGE	Air or vacuum region	STATOR

Physics → Face Region → Edit

3.1.9. Modify face regions

Goal Four face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

Face region

Name of region	Type of region	Region Compo nent	Number of Turns	Orientation	Series or parallel	Mechanical set
PHASE_NEG_1	Coil conductor region	B1	104	Negative	series	STATOR
PHASE_NEG_3	Coil conductor region	В3	208	Negative	series	STATOR
PHASE_POS_1	Coil conductor region	B1	104	Positive	series	STATOR
PHASE_POS_2	Coil conductor region	B2	208	Positive	series	STATOR

P

Physics → Face Region → Edit

3.1.10. Modify face regions

Goal Ten face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

Face region

Name of the region	Type of region	Material of region	Type of conductor	Associated solid conductor	Mechanical set
ROTOR_CAGE1 _BAR1	Solid conductor region	ALU_HOT	Circuit	BAR_1	ROTOR
ROTOR_ CAGE1_BAR2	Solid conductor region	ALU_HOT	Circuit	BAR_2	ROTOR
ROTOR_ CAGE1_BAR3	Solid conductor region	ALU_HOT	Circuit	BAR_3	ROTOR
ROTOR_ CAGE1_BAR4	Solid conductor region	ALU_HOT	Circuit	BAR_4	ROTOR
ROTOR_ CAGE1_BAR5	Solid conductor region	ALU_HOT	Circuit	BAR_5	ROTOR
ROTOR_ CAGE1_BAR6	Solid conductor region	ALU_HOT	Circuit	BAR_6	ROTOR
ROTOR_ CAGE1_BAR7	Solid conductor region	ALU_HOT	Circuit	BAR_7	ROTOR
ROTOR_ CAGE1_BAR8	Solid conductor region	ALU_HOT	Circuit	BAR_8	ROTOR
ROTOR_ CAGE1_BAR9	Solid conductor region	ALU_HOT	Circuit	BAR_9	ROTOR
ROTOR_ CAGE1_BAR10	Solid conductor region	ALU_HOT	Circuit	BAR_10	ROTOR

Physics → Face Region → Edit

Check physics and save case 1.

Physics → Check Physics

Save Case1

3.2. Case 1: Solve the project

Geometry description Mesh generation Physic description

Solving process

Result post-processing

Goal

A solving scenario is created in order to solve CASE1. Then CASE1 is solved.

Data

The characteristics of the solving scenario used to solve the CASE1 are presented in the tables below:

Solving scenario

Name	Comment	Type
INITIAL_POSITION	Study using geometrical and physical parameter	multi-values

Solving scenario

Parameter control							
Controlled		Interval					
Controlled parameter	Type	Lower limit	Higher limit	Method	Step value		
ANGPOS_ROTOR	Multi- values	0	18	Step value	0.5		

(A)

Solving → Solving scenario → New

Action

Solve and save the project under the following conditions:

- Solve with: solving scenario INITIAL_POSITION
- Project name: CASE1_SOLVED

Solving → Solve

3.3. Case 1: Results post-processing

Geometry description

Mesh generation Physic description

Solving process Result post-processing

Introduction

This section explains how to analyze the principal results of CASE 1.

Contents

This section contains the following topics:

Topic	See Page
2D Curve of the electromagnetic torque	41
2D Curve of the currents	42

3.3.1. 2D Curve of the electromagnetic torque

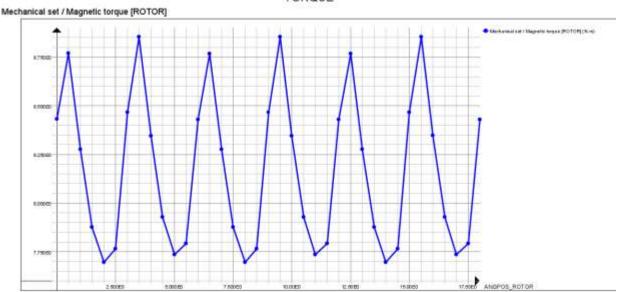
Goal

The values of the electromagnetic torque versus the angular position of the rotor are computed and displayed in a curve

Data

The characteristics of the curve are presented below.

2D curve (I/O parameter)								
	I/O Parameter on the abscissa Formula on the ordinate Mechanical set							
Name	Ougntity		Quantity	Formula				
	name	endpoint	endpoint	set	Quality	1 01 mata		
TORQUE	ANG_POS	0	18	ROTOR	Electromagnetic	TorqueElecMag		
TORQUE	_ROTOR	U	10	KOTOK	torque	(ROTOR)		


(3)

Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the electromagnetic torque is shown below.

Note

The torque is ranging from 7.69 N.m to 8.85 N.m due to slot effect. The average value of torque is 8.16 Nm, and this value is corresponding to a rotor position of 1.143°. This value will be used in order to directly compute the average torque with the torque menu.

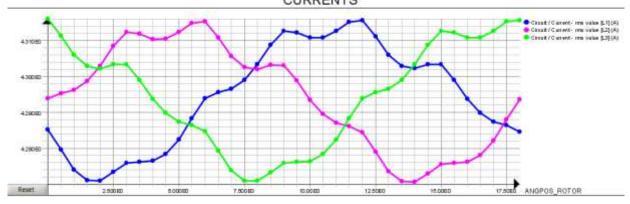
3.3.2. 2D Curve of the currents

Goal

The values of the current versus the angular position of the rotor are computed and displayed in a curve

Data

The characteristics of the curve are presented below.


	2D curve (I/O parameter)								
I/O Parameter on the abscissa Formula on the ordinate Circuit									
Name	Parameter name	Lower endpoint	Upper endpoint	Electrical component	Quantity	Formula			
CIRRENIX		0	18	L1	Current - rms value [A]	Mod(I(L1))/sqrt(2)			
	ANG_POS _ROTOR			L2	Current - rms value [A]	Mod(I(L2))/sqrt(2)			
				L3	Current - rms value [A]	Mod(I(L3))/sqrt(2)			

Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the currents is shown below. CURRENTS

4. Case 2: Full characteristics versus slip

Case 2

The goal of this simulation is to obtain the main quantities of the machine as function of the slip. Results will be shown as 2D plots with the slip as a varying parameter. The rotor will be lined up with the average value of the torque (1.143°).

Starting Flux project

The starting project is the Flux project CASE1_SOLVED.FLU. This project contains:

- the geometry description of the device
- the mesh
- the initial physical description of the motor
- the case1 solved

New project

All the CASE1_SOLVED results are deleted. The Flux project is then saved under the name of **CASE2.FLU**

Contents

This chapter contains the following topics:

Topic	See Page
Case 2: Solve the project	46
Case 2: Results post-processing	48

4.1. Case 2: Solve the project

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Goal

A solving scenario is created in order to solve CASE2.

Data

The characteristics of the solving scenario used to solve the CASE 2 are presented in the tables below:

Name	Comment
CHARACTERISTICS	Study using geometrical and physical parameter

Solving scenario

		Parameter	control				
Controlled							
parameter	Type	Lower limit	Higher limit	Variation Method	Step value		
ANGPOS_ROTOR	Mono -value	1.143					
		0.001	0.010	List of steps	0.001, 0.010		
		0.01	0.05	Step value	0.002		
SLIP	Multi- values	0.05	1.0	List of steps	0.05, 0.07, 0.09, 0.12, 0.15, 0.18, 0.20, 0.22, 0.25, 0.30, 0.40, 0.60, 0.80, 1.0		

Solving → Solving scenario → New

Action

Solve and save the project under the following conditions:

- Solve with: solving scenario CHARACTERISTICS
- Project name: CASE2_SOLVED

Solving → Solve

4.2. Case 2: Results post-processing

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Introduction

This section explains how to analyze the principal results of CASE 2.

Contents

This section contains the following topics:

Topic	See Page
Load and run a macro to calculate the iron losses	49
Create a sensor	50
Create I/O Parameters	51
2D Curve of the power balance	52
2D Curve of the efficiency	54
Compute efficiency	55
Steady state rated-load characteristics	56
Display isolines	57
Display isovalues	58
Display isovalues	59
2D Curve of the electromagnetic torque	61
Define the transient initialization	62

4.2.1. Load and run a macro to calculate the iron losses

Goal

Load and run a macro in order to calculate iron losses with Bertotti model, for each value of the variation parameter SLIP of the considered scenario. At the end, this macro create an I/O parameter "BertottiLosses" which can be used to make a power balance.

Action (1) Load macro named **BertottiIronLossesVsSlipAcIm.PFM** (in "Macros Flux2D Postproc" directory) in the current project.

Action (2) Run the macro.

Data (1) The computation of magnetic losses based on the flux density chart uses the following characteristics of laminations:

- Hysteresis loss coefficient kh = 306.5 Ws/T²m³
- classical losses coefficient $\sigma = 4500000 \ \Omega^{-1} m^{-1}$
- loss in excess coefficient $k_e = 0.61 \text{ Ws}^{1.5}/\text{m}^3/\text{T}^{1.5}$
- thickness of laminations d = 0.5 mm
- Stacking factor $k_f = 0.98$.

These data correspond to the value p10 = 2.8 W/kg of the magnetic losses for 1 T and 50 Hz.

Data (2) The characteristics of the macro are presented below.

BertottiIronLossesVsSlipAcIm.PFM

Scenario	Variation parameter	Face region	Hysteresis loss coeff	Classical loss coeff	Loss in excess coeff	Thickness of steel iron	Fill factor
CHARACTER ISTICS	SLIP	STATOR	306.5	4500000	0.61	5.0e-4	0.98

4.2.2. Create a sensor

Goal

Create a sensor to calculate the stator joules losses in stator winding.

Data

The characteristics of the sensor are presented in the table below:

Predefined sensor (Energy, Force, Torque): Losses by Joule Effect

Name	Comment	Stranded coil conductor
PJS	Stator joule losses	{B1, B2, B3}

Advanced → Sensor → New

Action

Evaluate the sensor.

Advanced → Sensor → Evaluate sensors

4.2.3. Create I/O Parameters

Goal

Create some I/O parameter to help the user to carry out a power balance as a function of the rotor slip.

Data

The characteristics of the I/O parameter defined by a formula are described in the table below.

I/O parameters defined by a formula

Name	Comment	Expression
PA	Absorbed power	-PowerP(V1)-PowerP(V2)-PowerP(V3)
PTR	Power transmitted to the rotor	PA-PJS
PU	Shaft power	(1-SLIP)*PTR
EFFY	Efficiency	(PU/(PA+(2*BERTOTTI_LOSSES)))*100

To create **PA** parameter, write the formula directly in the **Expression** area. See the note below.

Parameter/Quantity → I/O parameter → New

About PowerP function

Function **PowerP** is postprocessing function; this function is available via the command Compute on Physic entity, but this function is not directly available via the command Parameter I/O / New.

To create the **PA** parameter, the user can proceed in different ways:

- Write the formula directly in the **Expression** area as described above
- Recover the python command in the buildPhys.py file (included with examples)

```
VariationParameterFormula
(name='PA', formula='-PowerP(V1)-PowerP(V2)-PowerP(V3)')
```

• Write the complete formula (with using the formula editor) with the following information (in the user guide)

Active power	PowerP	W	$PowerP = Real \left(\frac{1}{2} U \cdot I^* \right)$
Current (magnitude)	I	A	
Voltage (magnitude)	U	V	
(Electric component) in SSACM	name	unit	Explanation
Usual global quantities	Flux	Flux	Explanation

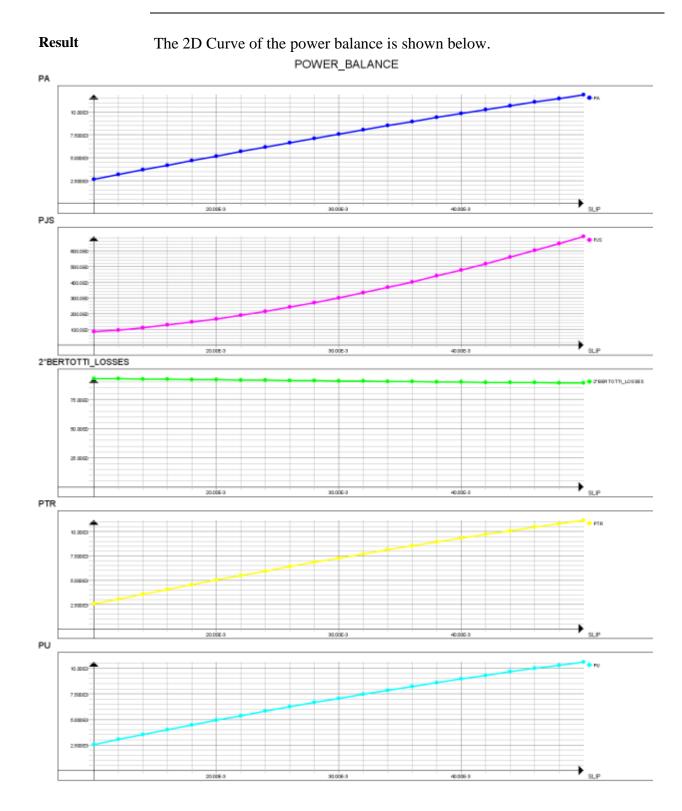
```
PA =-PowerP(V1)-PowerP(V2)-PowerP(V3)
PA = - Real(U(B1) *Conj(I(B1)/2))
    - Real(U(B2) *Conj(I(B2)/2))
```

- Real(U(B3)*Conj(I(B3))/2)

4.2.4. 2D Curve of the power balance

Goal The values of the power balance versus the rotor slip are computed and

displayed in a curve


Data The characteristics of the curve are presented below.

2D curve (I/O parameter)						
	I/O Parar	neter on the a	Formula			
Name	Parameter Lower Upper		Upper endpoint	f()		
	SLIP	0.01	0.05	PA		
POWER_BALANCE				PJS 2*BERTOTTI_LOSSES		
				PTR		
				PU		

P

Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

From the curve Pu(s), we obtain the rated slip value sn=0.032 corresponding to the output power equal with the motor rated power Pn.

4.2.5. 2D Curve of the efficiency

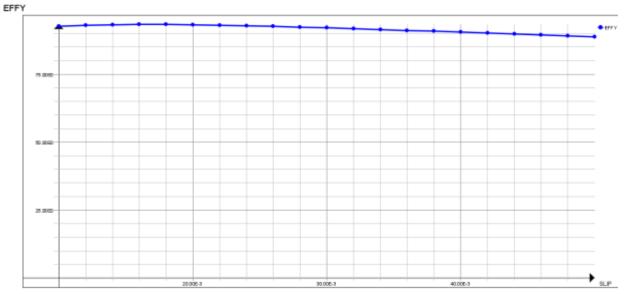
Goal The values of the efficiency versus rotor slip are computed and displayed in a

curve

Data The characteristics of the curve are presented below.

2D curve (I/O parameter)

	I/O Parameter	Formula		
Curve Name	Parameter name	Lower endpoint	Upper endpoint	f()
EFFICIENCY	SLIP	0.01	0.05	EFFY


Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the efficiency is shown below.

4.2.6. Compute efficiency

Goal

The efficiency of the motor can be calculated using the above results.

Result

The characteristics of the efficiency computation are presented in the table below:

Physical quantities	values
Input electrical power	8041.4 W
Joule losses in stator winding	332.6 W
Core loss (Bertotti)	90.63 W
Power transmitted to the rotor	8041.4 - 332.6 = 7708.8 W
Output mechanical power	(1-0.032)*7708.8 = 7462.1 W
Efficiency: $\frac{Pu}{Pa + PFe}$	91.76 %

Data

4.2.7. Steady state rated-load characteristics

Goal Characteristics of the motor for steady state rated-load operation

The characteristics of the motor for steady state rated-load operation are presented in the table below:

Steady state rated-load characteristics

sn	Nn [rpm]	I1n [A]	Men [Nm]	Mn [Nm]	Pu [W]	Pjs [W]	Cos øn
0.032	2904	8.48	24.13	24.54	7462.1	332.6	0.834

Where:

- Nn is the speed corresponding to the nominal slip (input data)
- Men is determined from predefined Flux menu

• Mn is defined by
$$Mn = \frac{Pn}{\omega} = \frac{Pn}{2\pi f_{1n}}$$

• Cos on is the phase of the current in phase1

4.2.8. Display isolines

Goal

Select the step of the scenario corresponding to rated-load motor steady state operation (s=0.032). Then, the isolines of the vector potential is computed on the device and isolines are displayed.

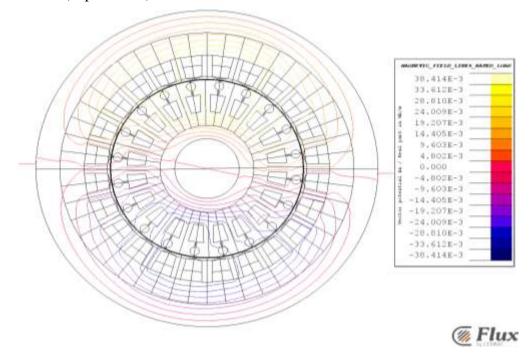
Data

The characteristics of the step selected are presented in the table below.

Scenario and step selection					
Scenario Computation step					
CILLAD A CEEDICEICO	SLIP	0.032			
CHARACTERISTICS	ANGPOS_ROTOR	1.143			

Action

Display isolines (1_ISOLIN_DOMAIN)



Graphic → Isolines → Display Isolines

Result

The following chart shows the isolines of the vector potential (An) on the device (slip = 0.032).

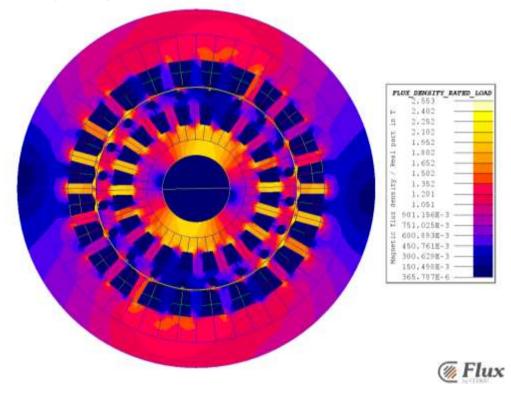
4.2.9. Display isovalues

Goal

The magnetic flux density is computed on the device (excluding vacuum regions) and isovalues are displayed in color shadings.

Action

Display isovalues (2_ISOVAL_NO_VACUUM)



Graphic → Isovalues → Display Isovalues

Result

The following chart shows the isovalues of the magnetic flux density on the device (s=0.032)

4.2.10. Display isovalues

Goal

Compute and display isovalues of the current density in rotor bars.

Data (1)

The characteristics of the new spatial group are presented below.

Spatial Group

Nama	Name Comment		Spatial group		
Name	Comment	Type	Face regions		
CDOLID DOTOD	Spatial group		ROTOR_CAGE1_BAR1		
GROUP_ROTOR_ CAGE1_BAR		Face region			
			ROTOR_CAGE1_BAR10		

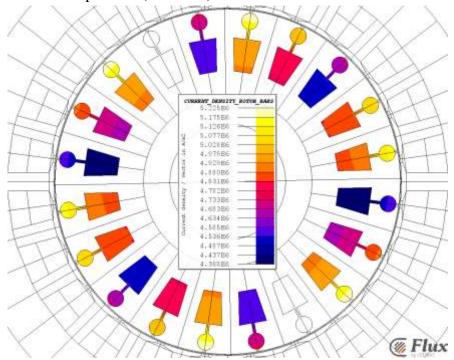
P

Support → Spatial group → New

Data (2) The characteristics of the isovalues are presented below.

Isovalues on face regions

Nome	Suppo	rt for isovalues	Quantity		
Name	Support	Groups	Quantity	Formula	
ISOVAL_	Spatial	GROUP_ROTOR_	Current density –	Ţ	
I_BAR	group	CAGE1_BAR	Vector [A/m2]	J	



Graphic → Isovalues → New

Result

The following chart shows the isovalues of the current density on the bars for rated-load operation (s = 0.032).

4.2.11. 2D Curve of the electromagnetic torque

Goal

The values of the electromagnetic torque versus rotor slip are computed and displayed in a curve

Data


The characteristics of the curve are presented below.

	2D curve (I/O parameter)								
	I/O Paran	neter on the	abscissa	Form	ıla on the ordinate	Mechanical set			
Name	Parameter	Lower	Upper	Mech.	Quantity	Formula			
	name	endpoint	endpoint	set					
TORQUE_ VS_SLIP	SLIP	0.001	1.0	ROTOR	Electromagnetic torque	TorqueElecMag (ROTOR)			

Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result (1) The 2D Curve of the torque is shown below.

Result (2) The characteristics of the motor for steady state rated-load operation are presented in the table below:

Motor characteristics for starting state amd critical slip rate

Sm	Mem [N.m]	Mes [N.m]	Mem/Men	Mes/Men	I1s [A]	I1s/I1n
0.22	63.85	51.32	2.65	2.13	49.11	5.79

4.2.12. Define the transient initialization

Goal

The case 4 is initialized with case 2 final configuration. For that:

- Select the step of the scenario corresponding to rated speed
- Create transient startup file from the case 2 post-processed project
- Select this file in case 4 application.

Data (1)

The characteristics of the step selected are presented in the table below.

Scenario and step selection			
Scenario	Computation step		
CHARACTERISTICS	SLIP	0.032	
	ANGPOS_ROTOR	1.143	

Data (2)

The characteristics of the transient startup file are presented in the table below.

Create file for transient startup		
File name	Phase for transient startup (degree)	
INITIAL_4	90	

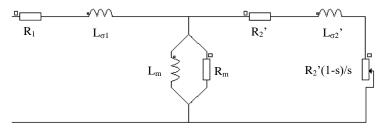
Data exchange → Create file for transient startup

Case 3: Equivalent electric circuit

5. Case 3: Equivalent electric circuit

Case 3

This study is a steady state computation.


The first part of this study consists of locked-rotor simulation. To carry out this simulation, it is required to supply the motor with a reduced voltage, varying from 15 % to 30% of the nominal value.

The second part consists of no-load condition, that is a particular working point of the case 2 when s = 0.001.

With both parts, the user will be able to extract the equivalent electric circuit parameters of the induction motor.

The following parameters of the equivalent electric circuit of the motor are evaluated using the simulation results of no-load motor operation and of locked-rotor model of the induction machine:

- Magnetization inductance, L_m;
- Resistance corresponding to magnetic losses, R_m;
- Rotor leakage inductance, $L'_{\sigma 2}$ and resistance R'_{2} , corresponding to motor start-up.

Starting Flux project

The starting project is the Flux project CASE2_SOLVED.FLU. This project contains:

- the geometry description of the device
- the mesh
- the initial physical description of the motor
- the case2 solved

New project

All the CASE2_SOLVED results are deleted. The Flux project is then saved under the name of **CASE3.FLU**

Contents

This chapter contains the following topics:

Topic	See Page
Case 3: Physical description	65
Case 3: Solve the project	69
Case 3: Results post-processing	71

Case 3: Equivalent electric circuit

5.1. Case 3: Physical description

Geometry description

Mesh generation

Physic description

Solving process

Result post-processing

Introduction

This section presents the definition of the physical properties - materials and regions of the model.

Contents

This section contains the following topics:

Торіс	See Page
Create I/O Parameters	66
Modify voltage sources	67

5.1.1. Create I/O Parameters

Goal

One I/O parameter will be created to define the value of voltage sources

Data

The characteristics of the I/O parameter defined via scenario are described in the table below.

I/O parameters	controlled	via scenario	

Name	Reference value
V_SUPPLY	380

Parameter/Quantity→ I/O parameter new → New

Case 3: Equivalent electric circuit

5.1.2. Modify voltage sources

Goal

The circuit is modified in order to describe the physics.

Data

The characteristics of the voltage sources are described in the table below.

Components	RMS value	Phase
V1	V_SUPPLY	0°
V2	V_SUPPLY	-120°
V3	V_SUPPLY	120°

Physics→ Electrical components → Voltage source → Edit

Case 3: Equivalent electric circuit

5.2. Case 3: Solve the project

Geometry description

Mesh generation

Physic description

Solving process

Result post-processing

Goal

A solving scenario is created in order to solve CASE3.

Data

The characteristics of the solving scenario used to solve the CASE 3 are presented in the tables below:

a 1		•	
SO	vino	scenario	
		beenuito	

Name	Comment	
LOCKED_ROTOR	Study using geometrical and physical parameters	

C 1		•
SO	ving	scenario
	LVIIIZ	SCEHALIC

	Parameter control				
Controlled Type		Interval			
		Lower limit	Higher limit	Method	Step value
ANGPOS_ROTOR	Mono-value	1.143			
SLIP	Mono-value		1.	0	
V_SUPPLY	Multi-values	60.0	120.0	Step value	2.0

Solving → Solving scenario → New

Action

Solve and save the project under the following conditions:

- Solve with: solving scenario LOCKED_ROTOR
- Project name: CASE3_SOLVED

Solving → Solve

Case 3: Equivalent electric circuit

5.3. Case 3: Results post-processing

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Introduction (1) This section explains how to analyze the principal results of CASE 3 for locked-rotor conditions.

Contents (1) This section contains the following topics:

Topic	See Page
Create I/O Parameters (CASE3)	72
2D Curve of the current (CASE3)	73
2D Curve of the active power (CASE3)	74
2D Curve of the joule losses in stator core (CASE 3)	75
Display isovalues (CASE 3)	76
Display isovalues (CASE 3)	77

Introduction (2) This section explains how to analyze the principal results of CASE 3 for no-load conditions. For this post-processing, the user will open the CASE2_POSTPROCESSED, and will analyze a particular case when s=0.001.

Contents (2) This section contains the following topics:

Topic	See Page
Computation of no-load currents (CASE 2)	79
Computation of iron losses in stator core (CASE2)	80
Display isolines (CASE2)	81
Display isovalues (CASE2)	82

Introduction (3) This section explains how to obtain the different parameters of the equivalent electric circuit of the induction motor.

Contents (3) This section contains the following topics:

Topic	See Page
Computation of equivalent electric circuit parameters	83

5.3.1. Create I/O Parameters (CASE3)

Goal

Create some I/O parameters to help the user to represent the rms value of the current in a 2D curve.

Data

The characteristics of the I/O parameter defined by a formula are described in the table below.

I/O parameters defined by a formula

Name	Comment	Expression
I_PH1	RMS value of the current in phase 1	Mod(I(V1))/Sqrt(2)
I_PH2	RMS value of the current in phase 2	Mod(I(V2))/Sqrt(2)
I_PH3	RMS value of the current in phase 3	Mod(I(V3))/Sqrt(2)
I_RMS	RMS value of the current	(I_PH1+I_PH2+I_PH3)/3

Parameter/Quantity → I/O parameter → New

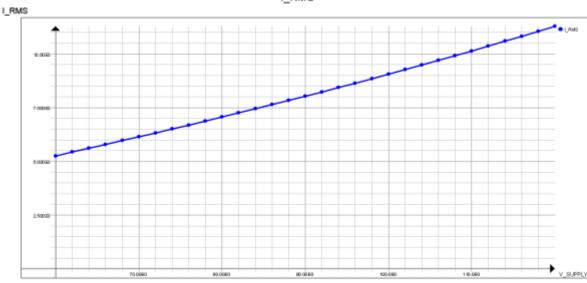
Case 3: Equivalent electric circuit

5.3.2. 2D Curve of the current (CASE3)

Goal The values of the rms current versus the voltage supply is displayed

Data The characteristics of the curve are presented below.

2D curve (I/O parameter)


	I/O Pa	rameter on the a	Formula on the ordinate	
Name	Name	Lower Upper endpoint endpoint		f()
RMS_CURRENT	V_SUPPLY	60	120	I_RMS

Result

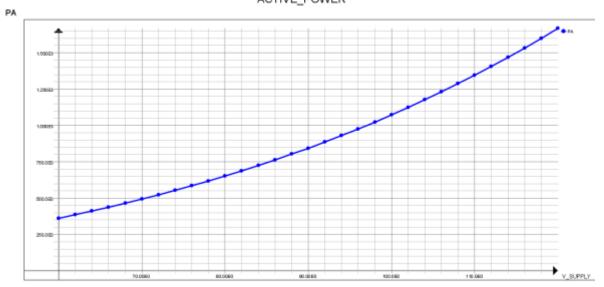
The 2D Curve of rms current is shown below.

For the value of nominal current (8.48 A), the corresponding voltage supply is 94.478 V.

5.3.3. 2D Curve of the active power (CASE3)

Flux

Goal The values of the active power versus the voltage supply is displayed


Data The characteristics of the curve are presented below.

2D curve (I/O parameter)

	I/O Parameter on the abscissa			Formula on the ordinate
Name	Parameter name	Lower endpoint	Upper endpoint	f()
ACTIVE_POWER	V_SUPPLY	60	120	PA

Result The 2D Curve of the active power is shown below.

For a voltage supply of 94.478 V, the corresponding active power is 941.4 Watts.

Case 3: Equivalent electric circuit

5.3.4. 2D Curve of the joule losses in stator core (CASE 3)

Goal

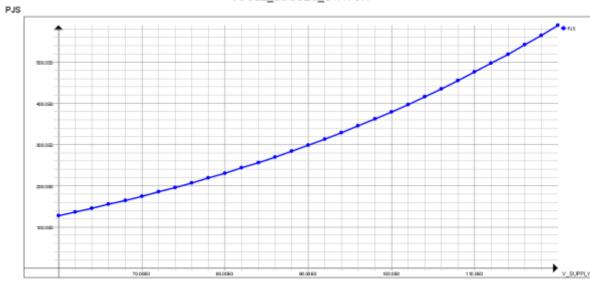
The values of the joule losses in stator core versus the voltage supply is displayed

Data

The characteristics of the curve are presented below.

2D curve (I/O parameter)

	I/O Parameter on the abscissa			Formula on the ordinate
Name	Parameter name	Lower endpoint	Upper endpoint	f()
JOULE_LOSSES_ STATOR	V_SUPPLY	60	120	PJS



Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the joule losses in stator core is shown below. ${\tt JOULE_LOSSES_STATOR}$

For a voltage supply of 94.478 V, the corresponding stator joule losses is 332.77 Watts.

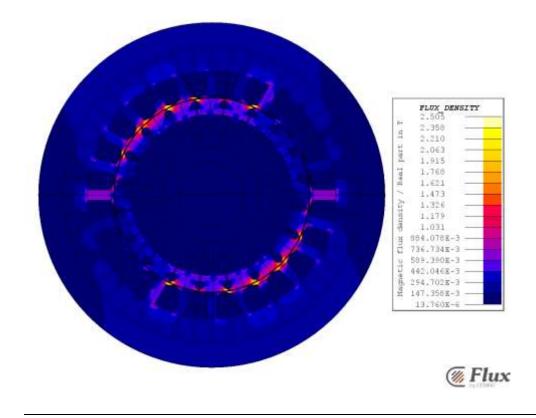
5.3.5. Display isovalues (CASE 3)

Goal

The magnetic flux density is computed on the device (excluding vacuum regions) and isovalues are displayed in color shadings.

Action

Display isovalues (ISOVAL_NO_VACUUM)



Graphic → Isovalues → Display isovalues

Result

The following chart shows the isovalues of the magnetic flux density on the device for locked-rotor operation (s = 1.0).

5.3.6. Display isovalues (CASE 3)

Goal

Compute and display isovalues of the current density in rotor bars.

Data (1)

The characteristics of the new spatial group are presented below.

Spatial Group

Name	Commont	Spatial group	
Name	Comment	Type	Face regions
CDOLID DOTOD	Spatial group		ROTOR_CAGE1_BAR1
GROUP_ROTOR_ CAGE1_BAR		Face region	
			ROTOR_CAGE1_BAR10

Support → Spatial group → New

Data (2) The characteristics of the isovalues are presented below.

Isovalues on face regions

Name Support for isovalues		Quantity		
Name	Support	Groups	Quantity	Formula
ISOVAL_	Spatial	GROUP_ROTOR_	Current density –	Ţ
I_BAR	group	CAGE1_BAR	Vector [A/m2]	J



Graphic → Isovalues → New

Result

The following chart shows the isovalues of the current density on the bars for for locked-rotor operation (s = 1.0).

5.3.7. Computation of no-load currents (CASE 2)

Goal

The goal of this part is to compute the no-load currents when the motor is supplied at rated voltage, in order to compute the magnetizing reactance and the iron loss resistance of the equivalent electric circuit of the machine.

For this post-processing, the user will open the CASE2_POSTPROCESSED, and will analyze a particular case when s = 0.001.

Action (1) Open the CASE2_POSTPROCESSED and select the time step.

Scenario and step selection			
Scenario Computation step			
CHARACTERISTICS	SLIP	0.001	
CHARACTERISTICS	ANGPOS_ROTOR	1.143	

Complements/ action (2)

Please note: In order to calculate the current in this project (CASE2), it is necessary to create the I_RMS parameter in this project (CASE2) as it is created in the current project (CASE3).

 \Rightarrow

Repeat steps described in section 5.3.1 "Create I/O Parameters (CASE3)", in this Flux project (CASE2).

Data

The characteristics of the computation are presented in the table below

Compute on physic entity			
Computed formula			
Name	Expression	1()	
NO_LOAD_CURRENT_1	I_RMS		

Computation → On physical entity → Compute

Result

The result of the computation is presented below

Results of computation		
Label Value		
I_RMS	3.5926	

5.3.8. Computation of iron losses in stator core (CASE2)

Goal

The goal is to compute the iron losses in the stator core to obtain the value of the iron loss resistance for the equivalent electric circuit of the machine.

Data

The characteristics of the computation are presented in the table below

Compute on physic entity			
Computed formula (4)			
Name Expression		1()	
IRON_LOSSES_STATOR 2*BERTOTTI_LOSSES			

Computation → On physical entity → Compute

Result

The result of the computation is presented below

Results of computation		
Label Value		
2*BERTOTTI_LOSSES	94.21	

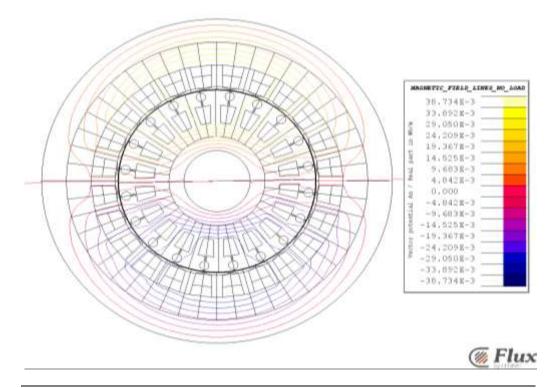
5.3.9. Display isolines (CASE2)

Goal

The isolines of the vector potential (An) is computed on the device and isolines are displayed.

Action

Display isolines (1_ISOLIN_DOMAIN)



Graphic → Isolines → Display Isolines

Result

The following chart shows the isolines of the vector potential (An) on the device for no-load operation (s = 0.001).

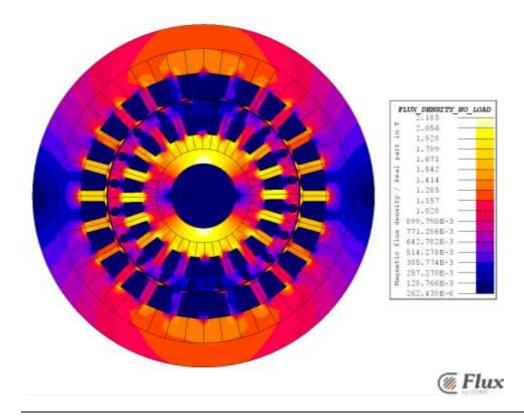
5.3.10. Display isovalues (CASE2)

Goal

The magnetic flux density is computed on the device (excluding vacuum regions) and isovalues are displayed in color shadings.

Action

Display isovalues (2_ISOVAL_NO_VACUUM)



Graphic → Isovalues → Display Isovalues

Result

The following chart shows the isovalues of the magnetic flux density on the device for no-load operation (s = 0.001).

5.3.11. Computation of equivalent electric circuit parameters

Goal

Compute the parameters of equivalent electric circuit of induction machine

Result

The computation is presented below.

The parameters of the rotor electric circuit for locked-rotor conditions are computed as follows:

- the Joule losses in the stator winding, $P_{jl} = 3R_1I_{1n}^2$;
- the Joule losses in the rotor circuit, $P_{j2} = sP_e = s(P_l P_{jl})$;
- the rotor resistance referred to the stator, $R_2' = \frac{P_{j2}}{3I_{1s}^2} = 2.386\Omega$;
- the rotor leakage inductance referred to the stator,

$$L_{\sigma 2}' = \frac{1}{2\pi f_{1n}} \sqrt{\left(\frac{U_1}{I_{1n}}\right)^2 - \left(R_1 + R_2'\right)^2} - L_{\sigma 1} = 0.02492H;$$

Based on the results of the no-load simulation, the following equivalent electric circuit parameters of the motor are computed:

• the resistance R_m corresponding to the magnetic losses:

$$R_{\rm m} = \frac{3U_{\rm el}^2}{P_{\rm m0}} \cong \frac{3U_{\rm in}^2}{P_{\rm m0}} = 4.598 \,\mathrm{k}\Omega$$

• the magnetization inductance of the motor:

$$L_{m} = \frac{1}{2\pi f_{1n}} \sqrt{\left[\frac{U_{1n}}{I_{10}}\right]^{2} - R_{1}^{2}} - L_{\sigma 1} = 0.326 \text{ H}$$

Equivalent electric circuit parameters

R1 [Ω]	Lσ1 [mH]	Rm [kΩ]	Lm [mH]	R'2 [Ω]
1.54	10.31	4.598	326	2.836

Note

The value of total leakage inductance of stator winding (analytically computed) is $L_{\sigma 1} = 10.31 \cdot 10^{-3}$ H.

6. Case 4: Transient simulation for rated speed

Case 4

This study is a transient magnetic computation.

The goal is to analyze the transient behavior of the motor for rated speed taking into account the magnetic field harmonics due to the slotting of stator, rotor and the rotor motion.

In this section, based on transient magnetic simulations with constant rated rotor speed, we compute the values of the motor torque taking into account the magnetic field harmonics due to the armatures' slotting and rotor motion. In order to decide when the computations are finished, proceed as follows:

- When analyzing the time variation of the instantaneous torque, you notice that the transient state is finished, you should calculate the mean value of electromagnetic torque on the last cycle of instantaneous torque oscillations;
- The simulation is continued over a time interval equal to the last cycle of electromagnetic torque oscillations, then the new mean value of the torque on this interval is compared with the preceding one;
- If the new mean value is almost equal with the preceding one, the transient analysis is finished; otherwise, the simulation will continue.

Starting Flux project

The starting project is the Flux project CASE3_SOLVED.FLU. This project contains:

- the geometry description of the device
- the mesh
- the initial physical description of the motor
- the case3 solved

New project

All the CASE3_SOLVED results are deleted. The Flux project is then saved under the name of **CASE4.FLU**

Contents

This chapter contains the following topics:

Topic	See Page
Case 4: Physical description	86
Case 4: Solving process	96
Case 4: Results post-processing	98

6.1. Case 4: Physical description

Geometry description

Mesh generation

Physic description

Solving process

Result post-processing

Introduction

This section presents the definition of the physical properties – materials and regions of the model.

Contents

This section contains the following topics:

Topic	See Page
Define the physical application	87
Modify mechanical sets	88
Create a circuit	89
Modify a circuit	90
Modify face regions	91
Modify face regions	92
Modify face regions	93

6.1.1. Define the physical application

Goal

After deleting the case 3 physical application, the case 4 physical application is defined. The required physical application is the Transient magnetic 2D application.

Data

The characteristics of the application are presented in the table below.

Transient Magnetic 2D application				
Definition Transient initialization			nitialization	
2D domain type	Depth of the domain	Type File		
2D Plane	125	Initialized by file	INITIAL_4.FTS	

Application → Define → Magnetic → Transient Magnetic 2D

6.1.2. Modify mechanical sets

Goal The two mechanical sets are modified.

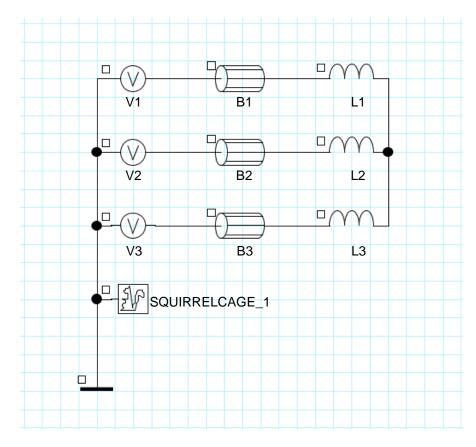
For a slip g = 0.032, speed rotation is 2904 tr/min

Data (1) The characteristics of the ROTOR mechanical set are presented in the table below:

	Type of	Axis			
Name	Mechanical set	Rotation axis	Coordinate	Pivot point	
		Hours and	system	First	Second
ROTOR	Rotation around one axis	Rotation around one axis parallel to Oz	XY1	0	0

kinematics			
Type of	General Velocity (RPM) Position at t=0		
kinematics			
Imposed speed	2898	1.143	

Data (2) The characteristics of the mechanical set STATOR are presented in the table below:


Name	Type of Mechanical set
STATOR	Fixed

6.1.3. Create a circuit

Goal

The goal is to define a circuit for this project.

Data (1) The electric circuit is presented in the figure below.

Action

Close the circuit editor context.

6.1.4. Modify a circuit

Goal

The circuit is modified in order to describe the physics.

Data (1) The characteristics of the stranded coil conductors are described in the table below.

Name of Stranded coil component	Resistance
B1, B2, B3	1.54 Ω

P

Physics → Electrical components → Stranded coil conductor → Edit

Data (2) The characteristics of the inductors are described in the table below.

Components	Values	
L1, L2, L3	4.04 mH	

Physics → Electrical components → Inductor → Edit

Data (3) The characteristics of the voltage sources are described in the table below.

Components	Formula
V1	380*sqrt(2)*Sin(2*Pi()*50*TIME+0)
V2	380*sqrt(2)*Sin(2*Pi()*50*TIME-2*Pi()/3)
V3	380*sqrt(2)*Sin(2*Pi()*50*TIME+2*Pi()/3)

(B)

Physics → Electrical components → Voltage source → Edit

Data (4) The characteristics of the squirrel cage are described in the table below.

Components	Number of bars	R end ring	L end ring
SQUIRRELCAGE_1	10	1.39E-6 Ω	1.06E-8 H

Physics → Electrical components → Squirrel cage → Edit

6.1.5. Modify face regions

Goal Two face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

	_		
Name	Type of region	Material of region	Mechanical set
STATOR	Magnetic non conducting region	STEEL_NLIN	STATOR
ROTOR	Magnetic non conducting region	STEEL_NLIN	ROTOR

Face region

6.1.6.

Modify face regions

Goal

Eight face regions are modified in order to describe the physics.

Data

The characteristics of the face regions are described in the table below.

Face region				
Name	Type of region	Mechanical set		
INFINITE	Air or vacuum region	STATOR		
PRESLOT	Air or vacuum region	STATOR		
ROTATING_AIRGAP	Air or vacuum region	STATOR		
ROTOR_AIR	Air or vacuum region	ROTOR		
ROTOR_PRESLOT	Air or vacuum region	ROTOR		
SHAFT	Air or vacuum region	ROTOR		
STATOR_AIR	Air or vacuum region	STATOR		
WEDGE	Air or vacuum region	STATOR		

Physics → Face Region → Edit

6.1.7. Modify face regions

Goal Four face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

Face region

Name	Type of region	Coil conductor region Component	Number of Turns	Orientation	Series or parallel	Mechanic al set
PHASE_NEG_1	Coil conductor region	B1	104	Negative	series	STATOR
PHASE_NEG_3	Coil conductor region	В3	208	Negative	series	STATOR
PHASE_POS_1	Coil conductor region	B1	104	Positive	series	STATOR
PHASE_POS_2	Coil conductor region	B2	208	Positive	series	STATOR

Physics→ Face Region → Edit

6.1.8. Modify face regions

Goal Ten face regions are modified in order to describe the physics.

Data The characteristics of the face regions are described in the table below.

Face region

Name of region	Type of region	Material of region	Type of conductor	Associated solid conductor	Mechanic al set
ROTOR_CAGE1 _BAR1	Solid conductor region	ALU_HOT	Circuit	BAR_1	ROTOR
ROTOR_CAGE1 _BAR2	Solid conductor region	ALU_HOT	Circuit	BAR_2	ROTOR
ROTOR_CAGE1 _BAR3	Solid conductor region	ALU_HOT	Circuit	BAR_3	ROTOR
ROTOR_CAGE1 _BAR4	Solid conductor region	ALU_HOT	Circuit	BAR_4	ROTOR
ROTOR_CAGE1 _BAR5	Solid conductor region	ALU_HOT	Circuit	BAR_5	ROTOR
ROTOR_CAGE1 _BAR6	Solid conductor region	ALU_HOT	Circuit	BAR_6	ROTOR
ROTOR_CAGE1 _BAR7	Solid conductor region	ALU_HOT	Circuit	BAR_7	ROTOR
ROTOR_CAGE1 _BAR8	Solid conductor region	ALU_HOT	Circuit	BAR_8	ROTOR
ROTOR_CAGE1 _BAR9	Solid conductor region	ALU_HOT	Circuit	BAR_9	ROTOR
ROTOR_CAGE1 _BAR10	Solid conductor region	ALU_HOT	Circuit	BAR_10	ROTOR

Physics→ Face Region → Edit

Action Check physics and save case 4.

Physics → Check Physics

Save Case4

6.2. Case 4: Solving process

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Goal

A solving scenario with a control of the time is created in order to solve CASE4.

Data

The characteristics of the solving scenario are presented in the tables below

a		•
50	ving	scenario
20		Decimalio

Name Comment		Comment	Type
	RATED LOAD	Study using geometrical and physical	Multi-values
	_	parameter	

Solving scenario

Parameter control						
Controlled		Interval				
Controlled parameter	Type	Lower limit	Higher limit	Method	Step value	
TIME	-	0	0.11	Step value	2.5E-4	

P

Solving → Solving scenario → New

Action

Solve and save the project under the following conditions:

- Solve with: solving scenario RATED_LOAD
- Project name: CASE4_SOLVED

Solving → Solve

6.3. Case 4: Results post-processing

Geometry description

Mesh generation Physic description

Solving process Result post-processing

Introduction

This section explains how to analyze the principal results of CASE 4

Contents

This section contains the following topics:

Topic	See Page
2D curve of the electromagnetic torque versus time	99
2D curve of the current bar rotor	100
Plot a 2D Curve of the torque	115

6.3.1. 2D curve of the electromagnetic torque versus time

Goal

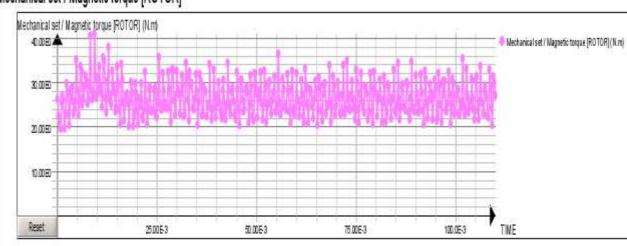
The value of electromagnetic torque versus TIME are computed and displayed in a curve.

Because of the initialization with a transient file at time t=0 s, the user must check that the initial value of the curve is equal to the torque value calculated for slip = 0.032 with the steady state model (see Case 2: Results post-processing, page 56).

Data

The characteristics of the curve are presented below.

2D curve (I/O parameter)								
I/O Parameter on the abscissa Formula on the ordinate Mechanical set								
Name	Parameter name	Lower endpoint	Upper endpoint	Mech. set	Quantity	Formula		
TORQUE_ VS_TIME	TIME	0.0	0.11	ROTOR	Electromagnetic torque	TorqueElecMag (ROTOR)		


Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the torque is shown below.

Mechanical set / Magnetic torque [ROTOR]

For slip = 0.032, the torque value calculated with the steady state model was 24.13 N.m. With the transient model, the first value is 26.2 N.m

6.3.2.

2D curve of the current bar rotor

Goal

The value of current bar rotor versus TIME are computed and displayed in a curve.

Initialization value

For the same reason at time t=0 s, the user must check that the initial value of the curve is equal to the value calculated for slip = 0.032 with the steady state model.

In the case of the bar number 10, the current calculated with the steady state model is:

- 512 A for the magnitude
- 3.0744 rd for the phase.

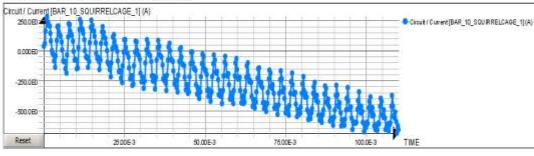
By consequent, the first value for the transient model should be equal to $512 * \sin(3.0744) = 34.78 \text{ A}$

With the transient model, we found the first value at t = 0: 34.77 A.

Data

The characteristics of the curve are presented below.

2D curve (I/O parameter)							
	I/O Param	Formula on the	e ordinate Circuit				
Name	Parameter	Lower	Upper	Electrical	Electrical Quantity Form		
	name	ame endpoint endpoir		component	Quantity	1 of maia	
IBAR_				BAR_10_		I(BAR_10_	
VERSUS_	TIME	0.0	0.11	SQUIRREL	Current [A]	SQUIRREL	
TIME				CAGE_1		CAGE_1)	


Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the current bar is shown below.

Circuit / Current [BAR_10_SQUIRRELCAGE_1]

6.3.3. 2D curve of the stator current

Goal

The value of current bar rotor versus TIME are computed and displayed in a curve.

Initialization value

For the same reason at time t=0 s, the user must check that the initial value of the curve is equal to the value calculated for slip = 0.032 with the steady state model.

In the case of the phase 1, the current value with the steady state model is:

- 11.969 A for the magnitude
- 2.547 rd for the phase.

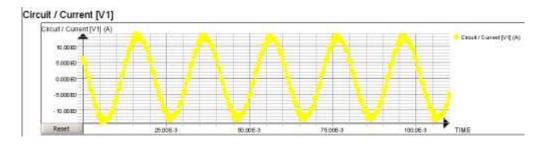
By consequent, the first value for the transient model should be equal to $11.969 * \sin(2.547) = 6.7 \text{ A}$

With the transient model, we found a first value at t = 0 equal to 6.13 A.

Data

The characteristics of the curve are presented below.

2D curve (I/O parameter)						
I/O Parameter on the abscissa Formula on the ordinate Circuit						
Name	Parameter name	Lower endpoint	Upper endpoint	Electrical component	Quantity	Formula
ISTAT_VERSUS _TIME	TIME	0.0	0.11	V1	Current [A]	I(V1)



Curve → 2D Curve (I/O parameter) → New 2D Curve (I/O parameter)

Result

The 2D Curve of the stator current is shown below.

7. Case 5: Real working conditions

Case 4

This study is a transient magnetic computation.

The purpose of this case is to simulate the behavior of the motor under real working conditions. For the first 0.4 seconds, the simulation will reproduce a no-load starting. After the starting, the machine will be loaded with the rated drag torque. Finally, 0.4 seconds after the load is applied, a fault condition will be reproduced. In this case, a single phase short-circuit (between one phase and neutral) will be simulated during 0.2 seconds.

In this period we can see the time evolution of main quantities like currents, torque, speed, etc.

Starting Flux project

The starting project is the Flux project CASE4_SOLVED.FLU. This project contains:

- the geometry description of the device
- the mesh
- the initial physical description of the motor
- the case3 solved

New project

All the CASE4_SOLVED results are deleted. The Flux project is then saved under the name of **CASE5.FLU**

Contents

This chapter contains the following topics:

Topic	See Page
Case 5: Physical description	104
Case 5: Solving process	110
Case 5: Results post-processing	112

7.1. Case 5: Physical description

Geometry description

Mesh generation

Physic description

Solving process

Result post-processing

Introduction

This section presents the definition of the physical properties - materials and regions of the model.

Contents

This section contains the following topics:

Topic	See Page
Modify the physical application	105
Create I/O Parameters	106
Modify mechanical set	107
Modify face regions	108
Modify a circuit	109

7.1.1. Modify the physical application

Goal

The physical application is modified. The required physical application is the Transient magnetic 2D application.

Data

The characteristics of the application are presented in the table below.

Transient Magnetic 2D application			
Def 2D domain type	inition Depth of the domain	Transient initialization	
2D Plane	125	With zero initial solution (variables set to 0)	

Application → Edit current application

7.1.2. Create I/O Parameters

Goal

One I/O parameter will be created to define the rated load condition and others to define the short circuit condition

Data

The characteristics of the I/O parameters defined by a formula are described in the table below.

I/O parameters defined by a formula

Name	Expression	Explanation
DRAG_TORQUE	24.83*Valid(TIME,0.4,100)	Load torque added at t=0.4s
R_PHASE_1	1.54*Valid(TIME,0,0.6) + 1.386*Valid(TIME,0.6,100)	Short-circuit simulated by
N_PHASE_1	104*Valid(TIME,0,0.6) + 62*Valid(TIME,0.6,100)	decreasing the number of turns and resistance at t=0.6s

Parameter/Quantity → I/O parameter → New

7.1.3. Modify mechanical set

Goal

Rotor mechanical set is modified in order to describe the physics.

Data

The characteristics of the "ROTOR" mechanical set are described in the table below.

Mechanical set

		Axis			
Name	Type of mechanical set	Rotation axis	Coordinate system	Pivot point coordinates	
				first	second
ROTOR	Rotation around one axis	Rotation around one axis parallel to Oz	XY1	0	0

Kinematics				
Type of	General			
kinematics	Velocity at t = 0s (rpm)	Position at t = 0s		
Coupled load	0	0.0		

Kinematics				
Type of	Internal characteristics			
kinematics	Type of load	Moment of inertia (kg.m2)	Resistive torque (N.m)	
Coupled load	Inertia and resistive torque	0.034	0.0	

Kinematics				
Type of	External characteristics			
kinematics	Type of load	Moment of inertia (kg.m2)	Resistive torque (N.m)	
Coupled load	Inertia and resistive torque	0.0	DRAG_TORQUE	

P

Physics → Mechanical set → Edit

7.1.4. Modify face regions

Goal Two face regions are modified in order to describe the short-circuit

conditions.

Data The characteristics of the face regions are described in the table below.

Face region

Name of region	Type of region	Coil conductor region Component	Number of turns	Orientation	Series or parallel	Mechanica l set
PHASE_ NEG_1	Coil conductor region	B1	N_PHASE_ 1	Negative	Series	STATOR
PHASE_ POS_1	Coil conductor region	B1	N_PHASE_ 1	Positive	Series	STATOR

7.1.5. Modify a circuit

Data

Goal The circuit is modified in order to describe the short-circuit conditions.

The characteristics of the stranded coil conductor are described in the table below.

Name of Stranded coil component	Resistance
B1	R_PHASE_1

7.2. Case 5: Solving process

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Goal

A solving scenario with a control of the time is created in order to solve CASE5.

Data

The characteristics of the solving scenario are presented in the tables below

Solving scenario

Name	Comment	Type
STARTING_LOAD	Study using geometrical and physical	Multi voluos
_FAULT	parameter	Multi-values

Solving scenario

Parameter control							
Controlled		Interval					
Controlled parameter	Type	Lower limit	Higher limit	Variation method	Step value		
TIME	-	0	0.8	Step value	0.0005		

Solving → Solving scenario → New

Action

Solve and save the project under the following conditions:

- Solve with: solving scenario STARTING_LOAD_FAULT
- Project name: CASE5_SOLVED

Solving → Solve

7.3. Case 5: Results post-processing

Geometry description

Mesh generation Physic description

Solving process

Result post-processing

Introduction

This section explains how to analyze the principal results of CASE 5

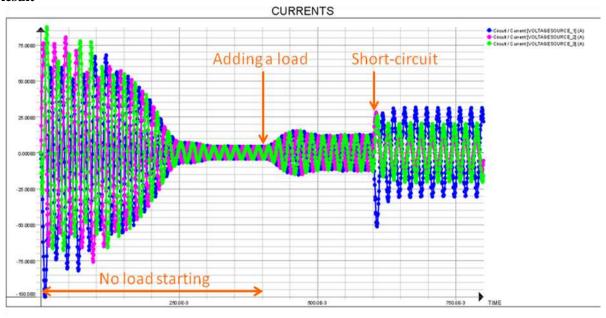
Contents

This section contains the following topics:

Topic	See Page
Plot a 2D Curve of the phase current	113
Plot a 2D Curve of the	114
Plot a 2D Curve of the torque	115

7.3.1.

Plot a 2D Curve of the phase

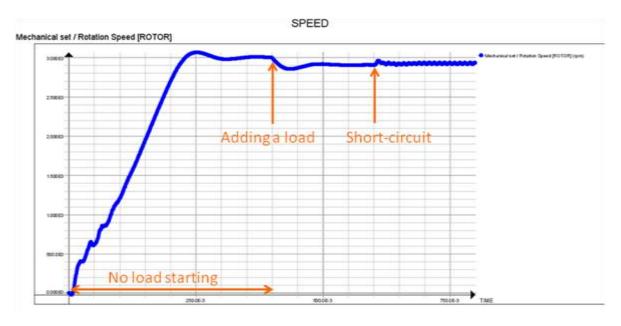

current

Goal Display a 2D curve of the phase current in the three phases.

Data The characteristics of the 2D curve are presented below.

2D curve (I/O parameter)							
	I/O Param	neter on the a	bscissa	Formula on the ordinate		Circuit	
Name	Parameter	Lower	Upper	Electrical	Quantity	Formula	
	name	endpoint	endpoint	component	Quantity	Formula	
CURRENT	TIME	0.0	0.8	V1	Current [A]	I(V1)	
				V2	Current [A]	I(V2)	
				V3	Current [A]	I(V3)	

Result


7.3.2. Plot a 2D Curve of the speed

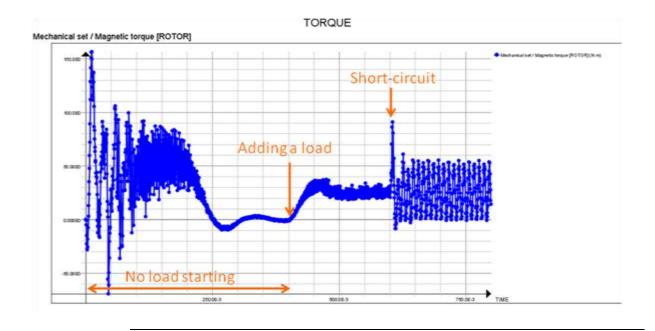
Goal Display a 2D curve of the speed.

Data The characteristics of the 2D curve are presented below.

2D curve (I/O parameter)							
I/O Parameter on the abscissa			Formula on the ordinate		Mechanical set		
Name	Parameter name	Lower endpoint	Upper endpoint	Mech. set	Quantity	Formula	
SPEED	TIME	0.0	0.8	ROTOR	Angular speed	AngSpeed (ROTOR)	

Result The result appears in the figure below.

7.3.3.


Plot a 2D Curve of the torque

Goal Display a 2D curve of the torque.

Data The characteristics of the 2D curve are presented below.

2D curve (I/O parameter)						
I/O Parameter on the abscissa Formula on the ordinate Mechanical set						
Name	Parameter name	Lower endpoint	Upper endpoint	Mech. set	Quantity	Formula
TORQUE	TIME	0.0	0.8	ROTOR	Electromagnetic torque	TorqueElecMag (ROTOR)

Result The result appears in the figure below.

