

3D ACTUATOR

Flux 3D : Training example

Overview

Studied device

A linear actuator

Functionality

 The rotation of the target wheel near the tip of the sensor changes the magnetic flux, creating an analog voltage signal that can be recovered in probes.

Device description in Flux

The device consists of an actuator

- o One Magnetic Core
- o One coil
- o One mobile part

process

Process outline

- o Import the SAT file
- Simplify the geometry
- Create the physics
- Solve the project
- o Check the results

Linear Actuator - Import

Linear Actuator - Import

Import geometry:

Check options

Save the project:Project → Save As → Actuator

Linear Actuator - Import

Detect and simplify small volumes

Correction&simplification → Detect entities → Detect small volumes

Correction&simplification → Simplify entities → Simplify small volumes

Simplify geometry

Correction&simplification → Remove volumes → New

Simplify geometry

Simplify the geometry : use the tool Clean faces

Geometry: defeaturing of holes

Correction&simplification → Defeature holes/filets/chamfers → New

Geometry: defeaturing of filets

Correction&simplification → Defeature holes/filets/chamfers → New

Geometry: Cut the device

Correction&simplification → Cut objects → Object cut

Cut along YZ and choose all the sections

Geometry: Cut the device

Select Obj_cut_1_2, 1_3 and 1_6 → "Right click" → Force delete

Geometry

Tools→Translation→New

"Move" is a geometric parameter (equal to 5)

Linear Actuator – Infinity Box

Create InfiniteBox: Geometry →InfiniteBox→New

Linear Actuator – Infinity Box

Complete infinity Box

Meshing

Disable the aided mesh: mesh →aided mesh →inactivated

Select all the device points and assign "Medium" mesh point

Select the points of the infinite box and assign "Large" Mesh point

Create the Application: Application → Define → Magnetic Magneto static 3D

Create the symmetry: Physics → Symmetry → New

Mesh the domain: Mesh → Mesh domain

Import material from Material Manager: Physics → Material → Import from material manager

Create an I/O parameter to drive current value: Physics → Parameter/Quantity → I/O parameter → New

Value: "Current"

Create the coil conductor: Physics →Electric components→Stranded coil conductor →New

Value: "Current"

Create volume regions: Physics → Volume region → New

Name	Туре	Material	Turn number	Component	Symmetries	Apparence
AIR	Air or vacuum region	-	-	-	-	White
COIL	Coil conductor	-	100	COILCONDUCTOR	in series	Cyan
MOBILE	Coil conductor	FLU_1010_XC1 0_RO	-	-	-	Magenta
INFINITE	Air or vacuum region	-	-	-	-	White
SUPPORT	Magnetic non-conducting region	FLU_1010_XC1 0_RO	-	-	-	Cyan

Assign regions to geometric entities: Physics →Assign Regions to geometric entities→Assign regions

Assign terminals to the coil: Physics →Orient wires of coil conductor regions→Completion mode

Select external terminals → Face 99

Check the physics

Solving

Create the solving scenario: Solving →Solving scenario→New

Value of current: From 3A to 9A with a step value of 3A

Value of move: from 1 to 5 with a step value of 3

Solve the project: Solving →Solve →In a new project: Actuator_solved

Display the magnetic field arrows:
Graphic → Arrows spatial Group → New

Select H on support

Display the magnetic field arrows : Graphic → Isovalues → New

Select B on "No vaccum"

MAGNETIC_FORCE

Create a 3D curve : Curve → 3D curve 2 I/O parameters → New

Select the Y component of the magnetic force on the mobile part

Extract forces data table:

- Create a force sensor: Advanced → Sensor → New
- Create an I/O parameter to extract just the Y component of the force on the mobile part:
 Advanced → Parameter I/O → New
- Export the data table: Data exchange → Export quantity → Export a data table

Extract forces data table:

O We obtain the forces data table on a csv file as output:

MOVE	CURRENT	Y_COMPONANT_OF_MAGNETIC_FORCE		
0.100000000000000E+01	0.300000000000000E+01	0.1817637071137207E+00		
0.30000000000000E+01	0.300000000000000E+01	0.5035884740582516E-01		
0.500000000000000E+01	0.300000000000000E+01	0.6972915523876870E-02		
0.100000000000000E+01	0.600000000000000E+01	0.6956145766925051E+00		
0.300000000000000E+01	0.600000000000000E+01	0.1968421347305795E+00		
0.500000000000000E+01	0.600000000000000E+01	0.2801183162208053E-01		
0.100000000000000E+01	0.900000000000000E+01	0.1424938790903286E+01		
0.300000000000000E+01	0.900000000000000E+01	0.4235336088209888E+00		
0.500000000000000E+01	0.900000000000000E+01	0.6400859106696966E-01		

THANK YOU

altair.com

