



CALCULATION OF ELECTRODYNAMIC FORCE WITH WINDINGS SHORT-CIRCUIT IN POWER TRANSFORMER

# THE BEST-IN-CLASS TOOL FOR ELECTROMAGNETIC SIMULATION

**Altair Flux™** 

Analyze, Create, Optimize
Getting accurate results in a fast way
Used in industry worldwide for more than
30 years



Leveraging the best simulation technologies in EM field simulation
To innovate and design energy efficient components and processes



### **Summary**

Geometry and physics

Solving

Post processing

 $\circ \ \ \text{Force computation}$ 





## **Geometry and physics**

#### Execute the python script:

- o buildGeomesh.py
- o buildPhys.py









#### **Geometry and physics**

To make the short circuit test we impose the nominal voltage and let Flux compute the short circuit current

To do it we need to modify the circuit







#### **Solving**

We solve the project with the reference value





#### **Post processing**





ARROWS 1





#### **Post processing**

To compute the electromagnetic force:

- Create sensors
- We use a cylindrical coordinate system

Evaluate sensors







#### Post processing

#### Electromagnetic force:

o Component1: radial force

o Component 2: tangential force

Component 3: force in Z axis







## **THANK YOU**

altair.com







#ONLYFORWARD

