MATVP
Bulk Data Entry Defines material properties for nonlinear creep materials.
Format A: For Power law-based definition
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATVP | MID | CTYPE | A | n | m | B | R | dH | |
thetaZ |
Format B: For material parameter calibration from test data
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATVP | MID | TEST | TID | SIG | ALB | AUB | nLB | nUB | |
mLB | mUB |
Example A
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATVP | 101 | STRAIN | 3.28e-11 | 3.15 | -0.2 |
Example B
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
MATVP | 102 | TEST | 1001 | 39.3 |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
MID | Unique material identification number.
No default (Integer > 0) |
|
CTYPE | Specifies the creep material model
type.
|
|
A | Material parameter. Default = blank (Real > 0.0) |
|
n | Material parameter. Default = blank (Real > 0.0) |
|
m | Material parameter. Default = blank (-1.0 ≤ Real ≤ 0.0) |
|
B | Material parameter. 8 No default (Real > 0.0) |
|
R | Universal gas constant. 8 No default (Real > 0.0) |
|
dH | Activation energy. 8 No default (Real > 0.0) |
|
thetaZ | Absolute zero temperature. Default = 0.0 (Real) |
|
TID | Table identification number of a
TABLES1 entry containing experimental test data. 9 In the TABLES1 definition,
(Integer > 0) |
|
SIG | von Mises stress of the experimental
test data. No default (Real ≥ 0.0) |
|
ALB | Lower bound for the material parameter
A. Default = 1.0 E-09 (Real > 0.0) |
|
AUB | Upper bound for the material parameter
A. Default = 1.0 E04 (Real > 0.0) |
|
nLB | Lower bound for the material parameter
n. Default = 0.0 (Real ≧ 0.0) |
|
nUB | Upper bound for the material parameter
n. Default = 6.0 (Real > 0.0) |
|
mLB | Lower bound for the material parameter
m. Default = -1.0 (-1 ≦ Real < 0.0) |
|
mUB | Upper bound for the material parameter
m. Default = 0.0 (-1 < Real ≦ 0.0) |
Comments
- Support information for MATVP is:
- Analysis types: Nonlinear static/transient for both small/large displacement types.
- Elements: CHEXA, CTETRA, CPENTA, CPYRA.
- Specifying a MAT1 and a MATVP with the same MID allows modeling creep material. Specifying a MAT1, a MATS1 and a MATVP with the same MID can model a creep material with plasticity.
- You can choose explicit or implicit time integration for creep materials by using the TINT field of the VISCO card.
- The STRAIN hardening
formulation is:
(1) The TIME hardening formulation is:(2) Where,- Equivalent creep strain rate
- Equivalent deviatoric stress
- Total time
The HYPERB hardening form is:(3) Where,- and
- The current and absolute zero temperatures, respectively.
If is set to zero, the temperature dependence is absent.
- The units for
is
.Where,
- Force
- Length
- Time
Consider switching to another set of units, if the value of is too small.
- A VISCO Subcase Entry is mandatory to conduct creep material analysis in a particular subcase.
- If CNTNLSUB is used with the
time hardening form:
- TIMEC indicates the accumulative time, only from the subcases with the VISCO entry.
- TIMET indicates the accumulative time from all the connected subcases.
For example, if there are 4 subcases – 1, 2, 3 and 5, where only Subcases 1, 3, and 5 are connected by CNTNLSUB.
If subcases 1 and 5 have VISCO entry while Subcase 3 does not have the VISCO entry, then:- TIMEC will indicate the accumulative time from Subcases 1 and 5 only.
- TIMET will indicate the accumulative time from Subcases 1, 3 and 5.
If CNTNLSUB is not used, then both TIMEC and TIMET have the same effect of denoting the time for a specific subcase (only for subcases with the VISCO entry).
- The values of B, R and dH are required only when the Hyperbolic Sine hardening form (CTYPE = HYPERB) is used.
- Format B can be used for a basic material parameter calibration functionality based on experimental creep test data. The calibration is based on a time hardening formulation. The upper and lower bounds can be used for searching the suitable parameter values during the calibration process.