Package Modelica.​Electrical.​Analog.​Semiconductors
Semiconductor devices such as diode, MOS and bipolar transistor

Information

This package contains semiconductor devices:

Most of the semiconductor devices contain a conditional heat port, which is not active by default. If it is active the loss power is calculated to be used in a thermal net. The heating variants of the semiconductor devices are provided to use the thermal port temperature in the electric calculation. That means that for a true thermal electric interaction the heating device models have to be used.

Extends from Modelica.​Icons.​Package (Icon for standard packages).

Package Contents

NameDescription
DiodeSimple diode
Diode2Improved diode model
exlinExponential function linearly continued for x > Maxexp
exlin2Exponential function linearly continued for x < MinExp and x > Maxexp
HeatingDiodeSimple diode with heating port
HeatingNMOSSimple MOS Transistor with heating port
HeatingNPNSimple NPN BJT according to Ebers-Moll with heating port
HeatingPMOSSimple PMOS Transistor with heating port
HeatingPNPSimple PNP BJT according to Ebers-Moll with heating port
NMOSSimple MOS Transistor
NPNSimple BJT according to Ebers-Moll
PMOSSimple MOS Transistor
PNPSimple BJT according to Ebers-Moll
powJust a helper function for x^y in order that a symbolic engine can apply some transformations more easily
powlinPower function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)
SimpleTriacSimple triac, based on Semiconductors.Thyristor model
ThyristorSimple Thyristor Model
ZDiodeZener diode with 3 working areas

Model Modelica.​Electrical.​Analog.​Semiconductors.​Diode
Simple diode

Information

The simple diode is a one port. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/vt
  i  =  ids ( e      - 1).

If the exponent v/vt reaches the limit maxex, the diode characteristic is linearly continued to avoid overflow.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​OnePort (Component with two electrical pins p and n and current i from p to n) and Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
CurrentIds1e-6Saturation current
VoltageVt0.04Voltage equivalent of temperature (kT/qn)
RealMaxexp15Max. exponent for linear continuation
ResistanceR1e+8Parallel ohmic resistance
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PositivePinpPositive electrical pin
NegativePinnNegative electrical pin
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​Diode2
Improved diode model

Information

This diode model is an improved version of the simple diode model. It includes a series resistance, parallel conductance, and also models reverse breakdown. The model is divided into three parts:

Temperature dependent behaviour is modelled when useHeatPort=true. In that case, the Vt parameter is ignored, and Vt is computed as k·T/q, where

Extends from Modelica.​Electrical.​Analog.​Interfaces.​OnePort (Component with two electrical pins p and n and current i from p to n) and Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false
VoltageVf0.7Forward voltage
CurrentIds1e-13Reverse saturation current
ResistanceRs16Ohmic resistance
VoltageVtModelica.Constants.R * T / Modelica.Constants.FThermal voltage (kT/q), 0.026 at normal conditions (around 20 degC)
RealN1Emission coefficient
VoltageBv100Reverse breakdown voltage
ConductanceGp1e-6Parallel conductance for numerical stability

Connectors

TypeNameDescription
PositivePinpPositive electrical pin
NegativePinnNegative electrical pin
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​ZDiode
Zener diode with 3 working areas

Information

The simple Zener diode is a one port. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/Vt                -(v+Bv)/(Nbv*Vt)
  i  =  Ids ( e      - 1) - Ibv ( e                  ).

If the exponent in one of the two branches reaches the limit Maxexp, the diode characteristic is linearly continued to avoid overflow.


The Zener diode model permits (in contrast to the simple diode model) current in reverse direction if the breakdown voltage Bv (also known Zener knee voltage) is exceeded.

The thermal power is calculated by i*v.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​OnePort (Component with two electrical pins p and n and current i from p to n) and Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
CurrentIds1e-6Saturation current
VoltageVt0.04Voltage equivalent of temperature (kT/qn)
RealMaxexp30Max. exponent for linear continuation
ResistanceR1e+8Parallel ohmic resistance
VoltageBv5.1Breakthrough voltage = Zener- or Z-voltage
CurrentIbv0.7Breakthrough knee current
RealNbv0.74Breakthrough emission coefficient
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PositivePinpPositive electrical pin
NegativePinnNegative electrical pin
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​PMOS
Simple MOS Transistor

Information

The PMOS model is a simple model of a p-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.

The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Some typical parameter sets are:

  W       L      Beta        Vt    K2     K5      DW       DL
  m       m      A/V^2       V     -      -       m        m
  50.e-6  8.e-6  0.0085e-3  -0.15  0.41   0.839  -3.8e-6  -4.0e-6
  20.e-6  6.e-6  0.0105e-3  -1.0   0.41   0.839  -2.5e-6  -2.1e-6
  30.e-6  5.e-6  0.0059e-3  -0.3   0.98   1.01    0       -3.9e-6
  30.e-6  5.e-6  0.0152e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0163e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0182e-3  -0.69  0.086  1.06   -0.1e-6  -0.6e-6
  20.e-6  6.e-6  0.0074e-3  -1.    0.4    0.59    0        0

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
LengthW2e-5Width
LengthL6e-6Length
TransconductanceBeta1.05e-5Transconductance parameter
VoltageVt-1Zero bias threshold voltage
RealK20.41Bulk threshold parameter
RealK50.839Reduction of pinch-off region
LengthdW-2.5e-6Narrowing of channel
LengthdL-2.1e-6Shortening of channel
ResistanceRDS1e+7Drain-Source-Resistance
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PinDDrain
PinGGate
PinSSource
PinBBulk
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​NMOS
Simple MOS Transistor

Information

The NMOS model is a simple model of a n-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.

The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

  W       L      Beta         Vt      K2     K5       DW       DL
  m       m      A/V^2        V       -      -        m        m
  12.e-6  4.e-6  0.062e-3    -4.5     0.24   0.61    -1.2e-6  -0.9e-6      depletion
  60.e-6  3.e-6  0.048e-3     0.1     0.08   0.68    -1.2e-6  -0.9e-6      enhancement
  12.e-6  4.e-6  0.0625e-3   -0.8     0.21   0.78    -1.2e-6  -0.9e-6      zero
  50.e-6  8.e-6  0.0299e-3    0.24    1.144  0.7311  -5.4e-6  -4.e-6
  20.e-6  6.e-6  0.041e-3     0.8     1.144  0.7311  -2.5e-6  -1.5e-6
  30.e-6  9.e-6  0.025e-3    -4.0     0.861  0.878   -3.4e-6  -1.74e-6
  30.e-6  5.e-6  0.031e-3     0.6     1.5    0.72     0       -3.9e-6
  50.e-6  6.e-6  0.0414e-3   -3.8     0.34   0.8     -1.6e-6  -2.e-6       depletion
  50.e-6  5.e-6  0.03e-3      0.37    0.23   0.86    -1.6e-6  -2.e-6       enhancement
  50.e-6  6.e-6  0.038e-3    -0.9     0.23   0.707   -1.6e-6  -2.e-6       zero
  20.e-6  4.e-6  0.06776e-3   0.5409  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.06505e-3   0.6209  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.6909  0.03   0.8     -0.3e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.4909  0.03   0.8     -0.3e-6  -0.2e-6
  12.e-6  4.e-6  0.023e-3    -4.5     0.29   0.6      0        0           depletion
  60.e-6  3.e-6  0.022e-3     0.1     0.11   0.65     0        0           enhancement
  12.e-6  4.e-6  0.038e-3    -0.8     0.33   0.6      0        0           zero
  20.e-6  6.e-6  0.022e-3     0.8     1      0.66     0        0
References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
LengthW2e-5Width
LengthL6e-6Length
TransconductanceBeta4.1e-5Transconductance parameter
VoltageVt0.8Zero bias threshold voltage
RealK21.144Bulk threshold parameter
RealK50.7311Reduction of pinch-off region
LengthdW-2.5e-6Narrowing of channel
LengthdL-1.5e-6Shortening of channel
ResistanceRDS1e+7Drain-Source-Resistance
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PinDDrain
PinGGate
PinSSource
PinBBulk
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​NPN
Simple BJT according to Ebers-Moll

Information

This model is a simple model of a bipolar NPN junction transistor according to Ebers-Moll.

Please note: In case of useHeatPort=true the temperature dependence of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

A typical parameter set is:

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe    Vt
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS     V
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15  0.02585
References:
Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
RealBf50Forward beta
RealBr0.1Reverse beta
CurrentIs1e-16Transport saturation current
InversePotentialVak0.02Early voltage (inverse), 1/Volt
TimeTauf1.2e-10Ideal forward transit time
TimeTaur5e-9Ideal reverse transit time
CapacitanceCcs1e-12Collector-substrate(ground) cap.
CapacitanceCje4e-13Base-emitter zero bias depletion cap.
CapacitanceCjc5e-13Base-coll. zero bias depletion cap.
VoltagePhie0.8Base-emitter diffusion voltage
RealMe0.4Base-emitter gradation exponent
VoltagePhic0.8Base-collector diffusion voltage
RealMc0.333Base-collector gradation exponent
ConductanceGbc1e-15Base-collector conductance
ConductanceGbe1e-15Base-emitter conductance
VoltageVt0.02585Voltage equivalent of temperature
RealEMin-100if x < EMin, the exp(x) function is linearized
RealEMax40if x > EMax, the exp(x) function is linearized
VoltageIC0Initial value
BooleanUICfalseDecision if initial value should be used
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
PinCCollector
PinBBase
PinEEmitter

Model Modelica.​Electrical.​Analog.​Semiconductors.​PNP
Simple BJT according to Ebers-Moll

Information

This model is a simple model of a bipolar PNP junction transistor according to Ebers-Moll.

Please note: In case of useHeatPort=true the temperature dependency of the electrical behavior is not modelled yet. The parameters are not temperature dependent.

A typical parameter set is:

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe    Vt
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS     V
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15  0.02585
References:
Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
RealBf50Forward beta
RealBr0.1Reverse beta
CurrentIs1e-16Transport saturation current
InversePotentialVak0.02Early voltage (inverse), 1/Volt
TimeTauf1.2e-10Ideal forward transit time
TimeTaur5e-9Ideal reverse transit time
CapacitanceCcs1e-12Collector-substrate(ground) cap.
CapacitanceCje4e-13Base-emitter zero bias depletion cap.
CapacitanceCjc5e-13Base-coll. zero bias depletion cap.
VoltagePhie0.8Base-emitter diffusion voltage
RealMe0.4Base-emitter gradation exponent
VoltagePhic0.8Base-collector diffusion voltage
RealMc0.333Base-collector gradation exponent
ConductanceGbc1e-15Base-collector conductance
ConductanceGbe1e-15Base-emitter conductance
VoltageVt0.02585Voltage equivalent of temperature
RealEMin-100if x < EMin, the exp(x) function is linearized
RealEMax40if x > EMax, the exp(x) function is linearized
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
PinCCollector
PinBBase
PinEEmitter

Model Modelica.​Electrical.​Analog.​Semiconductors.​HeatingDiode
Simple diode with heating port

Information

The simple diode is an electrical one port, where a heat port is added, which is defined in the Modelica.Thermal library. It consists of the diode itself and an parallel ohmic resistance R. The diode formula is:

                v/vt_t
  i  =  ids ( e        - 1).

where vt_t depends on the temperature of the heat port:
  vt_t = k*temp/q

If the exponent v/vt_t reaches the limit maxex, the diode characteristic is linearly continued to avoid overflow.
The thermal power is calculated by i*v.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​OnePort (Component with two electrical pins p and n and current i from p to n) and Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
CurrentIds1e-6Saturation current
RealMaxexp15Max. exponent for linear continuation
ResistanceR1e+8Parallel ohmic resistance
RealEG1.11Activation energy
RealN1Emission coefficient
TemperatureTNOM300.15Parameter measurement temperature
RealXTI3Temperature exponent of saturation current
BooleanuseHeatPorttrue=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PositivePinpPositive electrical pin
NegativePinnNegative electrical pin
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​HeatingNMOS
Simple MOS Transistor with heating port

Information

The NMOS model is a simple model of a n-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

  W       L      Beta         Vt      K2     K5       DW       DL
  m       m      A/V^2        V       -      -        m        m
  12.e-6  4.e-6  0.062e-3    -4.5     0.24   0.61    -1.2e-6  -0.9e-6      depletion
  60.e-6  3.e-6  0.048e-3     0.1     0.08   0.68    -1.2e-6  -0.9e-6      enhancement
  12.e-6  4.e-6  0.0625e-3   -0.8     0.21   0.78    -1.2e-6  -0.9e-6      zero
  50.e-6  8.e-6  0.0299e-3    0.24    1.144  0.7311  -5.4e-6  -4.e-6
  20.e-6  6.e-6  0.041e-3     0.8     1.144  0.7311  -2.5e-6  -1.5e-6
  30.e-6  9.e-6  0.025e-3    -4.0     0.861  0.878   -3.4e-6  -1.74e-6
  30.e-6  5.e-6  0.031e-3     0.6     1.5    0.72     0       -3.9e-6
  50.e-6  6.e-6  0.0414e-3   -3.8     0.34   0.8     -1.6e-6  -2.e-6       depletion
  50.e-6  5.e-6  0.03e-3      0.37    0.23   0.86    -1.6e-6  -2.e-6       enhancement
  50.e-6  6.e-6  0.038e-3    -0.9     0.23   0.707   -1.6e-6  -2.e-6       zero
  20.e-6  4.e-6  0.06776e-3   0.5409  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.06505e-3   0.6209  0.065  0.71    -0.8e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.6909  0.03   0.8     -0.3e-6  -0.2e-6
  20.e-6  4.e-6  0.05365e-3   0.4909  0.03   0.8     -0.3e-6  -0.2e-6
  12.e-6  4.e-6  0.023e-3    -4.5     0.29   0.6      0        0           depletion
  60.e-6  3.e-6  0.022e-3     0.1     0.11   0.65     0        0           enhancement
  12.e-6  4.e-6  0.038e-3    -0.8     0.33   0.6      0        0           zero
  20.e-6  6.e-6  0.022e-3     0.8     1      0.66     0        0

References:

Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
LengthW2e-5Width
LengthL6e-6Length
TransconductanceBeta4.1e-5Transconductance parameter
VoltageVt0.8Zero bias threshold voltage
RealK21.144Bulk threshold parameter
RealK50.7311Reduction of pinch-off region
LengthdW-2.5e-6Narrowing of channel
LengthdL-1.5e-6Shortening of channel
ResistanceRDS1e+7Drain-Source-Resistance
TemperatureTnom300.15Parameter measurement temperature
Realkvt-0.00696Fitting parameter for Vt
Realkk26e-4Fitting parameter for K2
BooleanuseHeatPorttrue=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PinDDrain
PinGGate
PinSSource
PinBBulk
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​HeatingPMOS
Simple PMOS Transistor with heating port

Information

The PMOS model is a simple model of a p-channel metal-oxide semiconductor FET. It differs slightly from the device used in the SPICE simulator. For more details please care for H. Spiro.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
The model does not consider capacitances. A high drain-source resistance RDS is included to avoid numerical difficulties.

References:
Spiro, H.: Simulation integrierter Schaltungen. R. Oldenbourg Verlag Muenchen Wien 1990.

Some typical parameter sets are:

  W       L      Beta        Vt    K2     K5      DW       DL
  m       m      A/V^2       V     -      -       m        m
  50.e-6  8.e-6  0.0085e-3  -0.15  0.41   0.839  -3.8e-6  -4.0e-6
  20.e-6  6.e-6  0.0105e-3  -1.0   0.41   0.839  -2.5e-6  -2.1e-6
  30.e-6  5.e-6  0.0059e-3  -0.3   0.98   1.01    0       -3.9e-6
  30.e-6  5.e-6  0.0152e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0163e-3  -0.69  0.104  1.1    -0.8e-6  -0.4e-6
  30.e-6  5.e-6  0.0182e-3  -0.69  0.086  1.06   -0.1e-6  -0.6e-6
  20.e-6  6.e-6  0.0074e-3  -1.    0.4    0.59    0        0

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
LengthW2e-5Width
LengthL6e-6Length
TransconductanceBeta1.05e-5Transconductance parameter
VoltageVt-1Zero bias threshold voltage
RealK20.41Bulk threshold parameter
RealK50.839Reduction of pinch-off region
LengthdW-2.5e-6Narrowing of channel
LengthdL-2.1e-6Shortening of channel
ResistanceRDS1e+7Drain-Source-Resistance
TemperatureTnom300.15Parameter measurement temperature
Realkvt-0.0029Fitting parameter for Vt
Realkk26.2e-4Fitting parameter for K2
BooleanuseHeatPorttrue=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
PinDDrain
PinGGate
PinSSource
PinBBulk
HeatPort_aheatPortConditional heat port

Model Modelica.​Electrical.​Analog.​Semiconductors.​HeatingNPN
Simple NPN BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar NPN junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References:

Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
RealBf50Forward beta
RealBr0.1Reverse beta
CurrentIs1e-16Transport saturation current
InversePotentialVak0.02Early voltage (inverse), 1/Volt
TimeTauf1.2e-10Ideal forward transit time
TimeTaur5e-9Ideal reverse transit time
CapacitanceCcs1e-12Collector-substrate(ground) cap.
CapacitanceCje4e-13Base-emitter zero bias depletion cap.
CapacitanceCjc5e-13Base-coll. zero bias depletion cap.
VoltagePhie0.8Base-emitter diffusion voltage
RealMe0.4Base-emitter gradation exponent
VoltagePhic0.8Base-collector diffusion voltage
RealMc0.333Base-collector gradation exponent
ConductanceGbc1e-15Base-collector conductance
ConductanceGbe1e-15Base-emitter conductance
RealEMin-100if x < EMin, the exp(x) function is linearized
RealEMax40if x > EMax, the exp(x) function is linearized
TemperatureTnom300.15Parameter measurement temperature
RealXTI3Temperature exponent for effect on Is
RealXTB0Forward and reverse beta temperature exponent
VoltageEG1.11Energy gap for temperature effect on Is
RealNF1Forward current emission coefficient
RealNR1Reverse current emission coefficient
BooleanuseHeatPorttrue=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
PinCCollector
PinBBase
PinEEmitter

Model Modelica.​Electrical.​Analog.​Semiconductors.​HeatingPNP
Simple PNP BJT according to Ebers-Moll with heating port

Information

This model is a simple model of a bipolar PNP junction transistor according to Ebers-Moll.
A heating port is added for thermal electric simulation. The heating port is defined in the Modelica.Thermal library.
A typical parameter set is (the parameter Vt is no longer used):

  Bf  Br  Is     Vak  Tauf    Taur  Ccs   Cje     Cjc     Phie  Me   PHic   Mc     Gbc    Gbe
  -   -   A      V    s       s     F     F       F       V     -    V      -      mS     mS
  50  0.1 1e-16  0.02 0.12e-9 5e-9  1e-12 0.4e-12 0.5e-12 0.8   0.4  0.8    0.333  1e-15  1e-15

References:

Vlach, J.; Singal, K.: Computer methods for circuit analysis and design. Van Nostrand Reinhold, New York 1983 on page 317 ff.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
RealBf50Forward beta
RealBr0.1Reverse beta
CurrentIs1e-16Transport saturation current
InversePotentialVak0.02Early voltage (inverse), 1/Volt
TimeTauf1.2e-10Ideal forward transit time
TimeTaur5e-9Ideal reverse transit time
CapacitanceCcs1e-12Collector-substrate(ground) cap.
CapacitanceCje4e-13Base-emitter zero bias depletion cap.
CapacitanceCjc5e-13Base-coll. zero bias depletion cap.
VoltagePhie0.8Base-emitter diffusion voltage
RealMe0.4Base-emitter gradation exponent
VoltagePhic0.8Base-collector diffusion voltage
RealMc0.333Base-collector gradation exponent
ConductanceGbc1e-15Base-collector conductance
ConductanceGbe1e-15Base-emitter conductance
RealEMin-100if x < EMin, the exp(x) function is linearized
RealEMax40if x > EMax, the exp(x) function is linearized
TemperatureTnom300.15Parameter measurement temperature
RealXTI3Temperature exponent for effect on Is
RealXTB0Forward and reverse beta temperature exponent
VoltageEG1.11Energy gap for temperature effect on Is
RealNF1Forward current emission coefficient
RealNR1Reverse current emission coefficient
BooleanuseHeatPorttrue=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
PinCCollector
PinBBase
PinEEmitter

Function Modelica.​Electrical.​Analog.​Semiconductors.​pow
Just a helper function for x^y in order that a symbolic engine can apply some transformations more easily

Information

This icon indicates Modelica functions.

Extends from Modelica.​Icons.​Function (Icon for functions).

Inputs

TypeNameDescription
Realx 
Realy 

Outputs

TypeNameDescription
Realz 

Function Modelica.​Electrical.​Analog.​Semiconductors.​powlin
Power function (1 - x)^(-y) linearly continued for x > 0 (provided y = const.)

Information

This icon indicates Modelica functions.

Extends from Modelica.​Icons.​Function (Icon for functions).

Inputs

TypeNameDescription
Realx 
Realy 

Outputs

TypeNameDescription
Realz 

Function Modelica.​Electrical.​Analog.​Semiconductors.​exlin
Exponential function linearly continued for x > Maxexp

Information

This icon indicates Modelica functions.

Extends from Modelica.​Icons.​Function (Icon for functions).

Inputs

TypeNameDescription
Realx 
RealMaxexp 

Outputs

TypeNameDescription
Realz 

Function Modelica.​Electrical.​Analog.​Semiconductors.​exlin2
Exponential function linearly continued for x < MinExp and x > Maxexp

Information

This icon indicates Modelica functions.

Extends from Modelica.​Icons.​Function (Icon for functions).

Inputs

TypeNameDescription
Realx 
RealMinexp 
RealMaxexp 

Outputs

TypeNameDescription
Realz 

Model Modelica.​Electrical.​Analog.​Semiconductors.​Thyristor
Simple Thyristor Model

Information

This is a simple thyristor model with three pins: Anode, Cathode and Gate. There are three operating modes:conducting, blocking and reverse breakthrough.
As long as the thyristor is in blocking mode it behaves like a linear resistance Roff=VDRM^2/(VTM*IH). But if the voltage between anode and cathode exceeds VDRM or a positive gate current flows for a sufficient time the mode changes to conducting mode. The model stays in conducting mode until the anode current falls below the holding current IH. There is no way to switch off the thyristor via the gate. If the voltage between anode and cathode is negative, the model represents a diode (parameters Vt, Nbv) with reverse breakthrough voltage VRRM.

The dV/dt switch on is not taken into account in this model. The gate circuit is not influenced by the main circuit.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
VoltageVDRM100Forward breakthrough voltage
VoltageVRRM100Reverse breakthrough voltage
CurrentIDRM0.1Saturation current
VoltageVTM1.7Conducting voltage
CurrentIH0.006Holding current
CurrentITM25Conducting current
VoltageVGT0.7Gate trigger voltage
CurrentIGT0.005Gate trigger current
TimeTON1e-6Switch on time
TimeTOFF1.5e-5Switch off time
VoltageVt0.04Voltage equivalent of temperature (kT/qn)
RealNbv0.74Reverse Breakthrough emission coefficient
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
PositivePinAnode 
NegativePinCathode 
PositivePinGate 

Model Modelica.​Electrical.​Analog.​Semiconductors.​SimpleTriac
Simple triac, based on Semiconductors.Thyristor model

Information

This is a simple TRIAC model based on the extended thyristor model Modelica.Electrical.Analog.Semiconductors.Thyristor.
Two thyristors are contrarily connected in parallel, whereas each transistor is connected with a diode.
Further information regarding the electrical component TRIAC can be detected in documentation of the ideal TRIAC model.
As an additional information: this model is based on the Modelica.Electrical.Analog.Semiconductors.Thyristor.

Attention: The model seems to be very sensitive with respect to the choice of some parameters (e.g., VDRM, VRRM). This is caused by the thyristor model. Further investigations are necessary.

Parameters

TypeNameDefaultDescription
VoltageVDRM100Forward breakthrough voltage
VoltageVRRM100Reverse breakthrough voltage
CurrentIDRM0.1Saturation current
VoltageVTM1.7Conducting voltage
CurrentIH0.006Holding current
CurrentITM25Conducting current
VoltageVGT0.7Gate trigger voltage
CurrentIGT0.005Gate trigger current
TimeTON1e-6Switch on time
TimeTOFF1.5e-5Switch off time
VoltageVt0.04Voltage equivalent of temperature (kT/qn)
RealNbv0.74Reverse Breakthrough emission coefficient
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureT293.15Fixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
NegativePinnCathode
PositivePinpAnode
PositivePingGate
HeatPort_aheatPort