Package Modelica.​Electrical.​Machines.​BasicMachines.​Components
Machine components like AirGaps

Information

This package contains components for modeling electrical machines, specially three-phase induction machines, based on space phasor theory. These models use package SpacePhasors.

Extends from Modelica.​Icons.​Package (Icon for standard packages).

Package Contents

NameDescription
AirGapDCLinear airgap model of a DC machine
AirGapRAirgap in rotor-fixed coordinate system
AirGapSAirgap in stator-fixed coordinate system
BasicTransformerPartial model of three-phase transformer
CompoundDCExcitationCompound excitation = shunt + series
DamperCageSquirrel Cage
ElectricalExcitationElectrical excitation
IdealCoreIdeal transformer with 3 windings
InductorSpace phasor inductor
InductorDCIdeal linear electrical inductor for electrical DC machines
PartialAirGapPartial airgap model
PartialAirGapDCPartial airgap model of a DC machine
PartialCorePartial model of transformer core with 3 windings
PermanentMagnetPermanent magnet excitation
PermanentMagnetWithLossesPermanent magnet excitation
SquirrelCageSquirrel Cage

Partial Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialAirGap
Partial airgap model

Information

Partial model of the airgap, using only equations.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​AirGapS
Airgap in stator-fixed coordinate system

Information

Model of the airgap in stator-fixed coordinate system, using only equations.

Extends from Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialAirGap (Partial airgap model).

Parameters

TypeNameDefaultDescription
InductanceLm Main field inductance
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​AirGapR
Airgap in rotor-fixed coordinate system

Information

Model of the airgap in rotor-fixed coordinate system, using only equations.

Extends from Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialAirGap (Partial airgap model).

Parameters

TypeNameDefaultDescription
InductanceLmd Main field inductance d-axis
InductanceLmq Main field inductance q-axis
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​Inductor
Space phasor inductor

Information

This is a model of an inductor, described with space phasors.

Parameters

TypeNameDefaultDescription
InductanceL[2] Inductance of both axes

Connectors

TypeNameDescription
SpacePhasorspacePhasor_a 
SpacePhasorspacePhasor_b 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​SquirrelCage
Squirrel Cage

Information

Model of a squirrel cage / symmetrical damper cage in two axis.

The squirrel cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha of both axis are the same.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
InductanceLrsigma Rotor stray inductance per phase translated to stator
ResistanceRr Rotor resistance per phase translated to stator at T_ref
TemperatureT_ref293.15Reference temperature
LinearTemperatureCoefficientalpha0Temperature coefficient of resistance at T_ref
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
SpacePhasorspacePhasor_r 
output RealOutputi[2]Currents out from squirrel cage

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​DamperCage
Squirrel Cage

Information

Model of an asymmetrical damper cage in two axis.

The damper cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha can be set differently for both d- and q-axis, although reference temperature for both resistances is the same.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
InductanceLrsigmad Stray inductance in d-axis per phase translated to stator
InductanceLrsigmaq Stray inductance in q-axis per phase translated to stator
ResistanceRrd Resistance in d-axis per phase translated to stator at T_ref
ResistanceRrq Resistance in q-axis per phase translated to stator at T_ref
TemperatureT_ref293.15Reference temperature of both resistances in d- and q-axis
LinearTemperatureCoefficientalpha0Temperature coefficient of both resistances in d- and q-axis at T_ref
BooleanuseHeatPortfalse=true, if heatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false

Connectors

TypeNameDescription
HeatPort_aheatPortConditional heat port
output RealOutputi[2]Currents out from damper
output RealOutputlossPowerDamper losses
SpacePhasorspacePhasor_r 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​ElectricalExcitation
Electrical excitation

Information

Model of an electrical excitation, converting excitation to space phasor.

Parameters

TypeNameDefaultDescription
RealturnsRatio Ratio stator current / excitation current

Connectors

TypeNameDescription
SpacePhasorspacePhasor_r 
PositivePinpin_ep 
NegativePinpin_en 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PermanentMagnet
Permanent magnet excitation

Information

Model of a permanent magnet excitation, characterized by an equivalent excitation current.

Parameters

TypeNameDefaultDescription
CurrentIe Equivalent excitation current

Connectors

TypeNameDescription
SpacePhasorspacePhasor_r 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PermanentMagnetWithLosses
Permanent magnet excitation

Information

Model of a permanent magnet excitation with loss, characterized by an equivalent excitation current.

Extends from Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PermanentMagnet (Permanent magnet excitation) and Modelica.​Electrical.​Machines.​Losses.​InductionMachines.​PermanentMagnetLosses (Model of permanent magnet losses dependent on current and speed).

Parameters

TypeNameDefaultDescription
CurrentIe Equivalent excitation current
Integerm3Number of phases
PermanentMagnetLossParameterspermanentMagnetLossParameters Permanent magnet loss parameters
BooleanuseHeatPortfalse=true, if heatPort is enabled

Connectors

TypeNameDescription
SpacePhasorspacePhasor_r 
Flange_aflangeShaft end
Flange_asupportHousing and support
HeatPort_aheatPortOptional port to which dissipated losses are transported in form of heat

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​InductorDC
Ideal linear electrical inductor for electrical DC machines

Information

The linear inductor connects the branch voltage v with the branch current i by v = L * di/dt. If quasiStationary == false, the electrical transients are neglected, i.e., the voltage drop is zero.

Extends from Modelica.​Electrical.​Analog.​Interfaces.​OnePort (Component with two electrical pins p and n and current i from p to n).

Parameters

TypeNameDefaultDescription
InductanceL Inductance
BooleanquasiStationary No electrical transients if true

Connectors

TypeNameDescription
PositivePinpPositive electrical pin
NegativePinnNegative electrical pin

Partial Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialAirGapDC
Partial airgap model of a DC machine

Information

Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current. If quasiStationary == false, the electrical transients are neglected, i.e., the induced excitation voltage is zero.
Induced armature voltage is calculated from flux times angular velocity.

Parameters

TypeNameDefaultDescription
BooleanquasiStationary No electrical transients if true
RealturnsRatio Ratio of armature turns over number of turns of the excitation winding

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
PositivePinpin_ap 
PositivePinpin_ep 
NegativePinpin_an 
NegativePinpin_en 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​AirGapDC
Linear airgap model of a DC machine

Information

Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current.
Induced armature voltage is calculated from flux times angular velocity.

Extends from Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialAirGapDC (Partial airgap model of a DC machine).

Parameters

TypeNameDefaultDescription
BooleanquasiStationary No electrical transients if true
RealturnsRatio Ratio of armature turns over number of turns of the excitation winding
InductanceLe Excitation inductance

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
PositivePinpin_ap 
PositivePinpin_ep 
NegativePinpin_an 
NegativePinpin_en 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​CompoundDCExcitation
Compound excitation = shunt + series

Information

Model to compound the shunt excitation current and the series excitation current to the total excitation current w.r.t. shunt excitation. This model is intended to be placed between shunt and series excitation pins and the airgap; the connection to airgap has to be grounded at one point.

Parameters

TypeNameDefaultDescription
RealexcitationTurnsRatio Ratio of series excitation turns over shunt excitation turns

Connectors

TypeNameDescription
PositivePinpin_pPositive pin to airgap
NegativePinpin_nNegative pin to airgap
PositivePinpin_epPositive pin to shunt excitation
NegativePinpin_enNegative pin to shunt excitation
PositivePinpin_sepPositive pin to series excitation
NegativePinpin_senNegative pin to series excitation

Partial Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialCore
Partial model of transformer core with 3 windings

Information

Partial model of transformer core with 3 windings; saturation function flux versus magnetizing current has to be defined.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Realn12 Turns ratio 1:2
Realn13 Turns ratio 1:3

Connectors

TypeNameDescription
PositivePlugplug_p1 
NegativePlugplug_n1 
PositivePlugplug_p2 
NegativePlugplug_n2 
PositivePlugplug_p3 
NegativePlugplug_n3 

Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​IdealCore
Ideal transformer with 3 windings

Information

Ideal transformer with 3 windings: no magnetizing current.

Extends from Modelica.​Electrical.​Machines.​BasicMachines.​Components.​PartialCore (Partial model of transformer core with 3 windings).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Realn12 Turns ratio 1:2
Realn13 Turns ratio 1:3

Connectors

TypeNameDescription
PositivePlugplug_p1 
NegativePlugplug_n1 
PositivePlugplug_p2 
NegativePlugplug_n2 
PositivePlugplug_p3 
NegativePlugplug_n3 

Partial Model Modelica.​Electrical.​Machines.​BasicMachines.​Components.​BasicTransformer
Partial model of three-phase transformer

Information

Partial model of a three-phase transformer, containing primary and secondary resistances and stray inductances, as well as the iron core. Circuit layout (vector group) of primary and secondary windings have to be defined.
Exactly the same as Interfaces.PartialBasicTransformer, included for compatibility reasons.

Extends from Modelica.​Electrical.​Machines.​Interfaces.​PartialBasicTransformer (Partial model of three-phase transformer) and Modelica.​Icons.​ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions).

Parameters

TypeNameDefaultDescription
final Integerm3Number of phases
Realn Ratio primary voltage (line-to-line) / secondary voltage (line-to-line)
ResistanceR1 Primary resistance per phase at TRef
TemperatureT1Ref Reference temperature of primary resistance
LinearTemperatureCoefficient20alpha20_1 Temperature coefficient of primary resistance at 20 degC
InductanceL1sigma Primary stray inductance per phase
ResistanceR2 Secondary resistance per phase at TRef
TemperatureT2Ref Reference temperature of secondary resistance
LinearTemperatureCoefficient20alpha20_2 Temperature coefficient of secondary resistance at 20 degC
InductanceL2sigma Secondary stray inductance per phase
BooleanuseThermalPortfalseEnable / disable (=fixed temperatures) thermal port
TemperatureT1Operational Operational temperature of primary resistance
TemperatureT2Operational Operational temperature of secondary resistance

Connectors

TypeNameDescription
PositivePlugplug1Primary plug
NegativePlugplug2Secondary plug
ThermalPortTransformerthermalPort