Package Modelica.​Electrical.​Machines.​Examples.​DCMachines
Test examples of DC machines

Information

This package contains test examples of DC machines.

Extends from Modelica.​Icons.​ExamplesPackage (Icon for packages containing runnable examples).

Package Contents

NameDescription
DCEE_StartTest example: DC with electrical excitation starting with voltage ramp
DCPM_CoolingTest example: Cooling of a DCPM motor
DCPM_CurrentControlledTest example: DC with permanent magnet starting with current controller
DCPM_QuasiStationaryTest example: Compare DCPM motors transient - quasistationary
DCPM_StartTest example: DC with permanent magnet starting with voltage ramp
DCPM_TemperatureTest example: Investigate temperature dependency of a DCPM motor
DCPM_withLossesTest example: Investigate influence of losses on DCPM motor performance
DCSE_SinglePhaseTest example: DC with serial excitation starting with voltage ramp
DCSE_StartTest example: DC with serial excitation starting with voltage ramp

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_Start
Test example: DC with permanent magnet starting with voltage ramp

Information

Test example: Permanent magnet DC machine started with an armature voltage ramp
A voltage ramp is applied to the armature, causing the DC machine to start, and accelerating inertias.
At time tStep a load step is applied.
Simulate for 2 seconds and plot (versus time):

Default machine parameters of model DC_PermanentMagnet are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
TimetStart0.2Start of armature voltage ramp
TimetRamp0.8Armature voltage ramp
TorqueTLoad63.66Nominal load torque
TimetStep1.5Time of load torque step
InertiaJLoad0.15Load's moment of inertia
DcPermanentMagnetDatadcpmData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_CurrentControlled
Test example: DC with permanent magnet starting with current controller

Information

Test example: Permanent magnet DC machine started with current controller
The current controller is parameterized according to absolute optimum. At time 0.1 s a reference current step with height = nominal armature current is applied, causing the DC machine to start, and accelerating inertias.
The machine is loaded by a quadratic speed dependent load torque.
Simulate for 2 seconds and plot (versus time):

Default machine parameters of model DC_PermanentMagnet are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
TorqueTLoadViNominal * dcpmData.IaNominal / dcpmData.wNominalNominal load torque
AngularVelocitywLoaddcpmData.​wNominalNominal load torque
InertiaJLoaddcpmData.​JrLoad's moment of inertia
ResistanceRaModelica.Electrical.Machines.Thermal.convertResistance(dcpmData.Ra, dcpmData.TaRef, dcpmData.alpha20a, dcpmData.TaNominal)Warm armature resistance
VoltageViNominaldcpmData.VaNominal - Ra * dcpmData.IaNominalNominal induced voltage
TimeTadcpmData.La / RaArmature time constant
TimeTs0.001Dead time of inverter
ResistancekRa * Ta / (2 * Ts)Current controller proportional gain
TimeTiTaCurrent controller integral time constant
MagneticFluxkPhiViNominal / dcpmData.wNominalVoltage constant
DcPermanentMagnetDatadcpmData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCEE_Start
Test example: DC with electrical excitation starting with voltage ramp

Information

Test example: Electrically separate excited DC machine started with an armature voltage ramp
A voltage ramp is applied to the armature, causing the DC machine to start, and accelerating inertias.
At time tStep a load step is applied.
Simulate for 2 seconds and plot (versus time):

Default machine parameters of model DC_ElectricalExcited are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
TimetStart0.2Start of armature voltage ramp
TimetRamp0.8Armature voltage ramp
VoltageVe100Actual excitation voltage
TorqueTLoad63.66Nominal load torque
TimetStep1.5Time of load torque step
InertiaJLoad0.15Load's moment of inertia
DcElectricalExcitedDatadceeData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCSE_Start
Test example: DC with serial excitation starting with voltage ramp

Information

Test example: Series excited DC machine started with a series resistor
At constant source voltage, a series resistor limiting the armature current, is reduced according to a ramp, causing the DC machine to start, and accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.
Simulate for 2 seconds and plot (versus time):

Default machine parameters of model DC_SeriesExcited are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
TimetStart0.1Start of resistance ramp
TimetRamp0.9Resistance ramp
TorqueTLoad63.66Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2820 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.15Load's moment of inertia
DcSeriesExcitedDatadcseData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCSE_SinglePhase
Test example: DC with serial excitation starting with voltage ramp

Information

Test example: Series excited DC machine at singlephase AC voltage started with a series resistor
At sinusoidal source voltage, a series resistor limiting the armature current, is reduced according to a ramp, causing the DC machine to start, and accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.
Simulate for 2 seconds and plot (versus time):

Default machine parameters of model DC_SeriesExcited are used.
Note:
Since both the field and the armature current are sinusoidal, the waveform of the torque is the square of sine. Due to the additional inductive voltage drops, output of the motor is lower, compared to the same motor (DCSE_Start) at DC voltage.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage RMS
TimetStart0.1Start of resistance ramp
TimetRamp0.9Resistance ramp
TorqueTLoad63.66Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2820 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.15Load's moment of inertia
DcSeriesExcitedDatadcseData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_Temperature
Test example: Investigate temperature dependency of a DCPM motor

Information

Test example: Investigate influence of armature temperature on a DCPM motor
The motor starts at no-load speed, then a load step is applied.
Beginning with the load step, the armature temperature rises exponentially from 20 degC to 80 degC.
Simulate for 3 seconds and plot (versus time):

Default machine parameters are used, but: So the machine is at the beginning in cold condition, ending in warm condition (with the same armature resistance as the unmodified machine).

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
VoltageVe100Actual excitation voltage
AngularVelocityw0Modelica.SIunits.Conversions.from_rpm(1500)No-load speed
TorqueTLoad63.66Nominal load torque
InertiaJLoad0.15Load's moment of inertia
DcPermanentMagnetDatadcpmData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_Cooling
Test example: Cooling of a DCPM motor

Information

Test example: Demonstrate cooling of a DCPM motor
The motor starts at no-load speed, then load pulses are applied.
The cooling circuit consists of armature's thermal capacitance, a thermal conductance between armature and core, core's thermal capacitance and a thermal conductance between core and coolant. The coolant flow circuit consists of inlet, volume flow, a pipe connected to the core and the outlet.
Please note:

  1. the total coolant's temperature rise is 10 K (over coolant inlet)
  2. the core's temperature rise is 27.5 K (over coolant's average temperature between inlet and outlet)
  3. the armature's temperature rise is 55 K (over coolant's average temperature between inlet and outlet)
Simulate for 25 seconds and plot (versus time): Therefore the armature temperature would reach nominal armature temperature at constant nominal load.
Default machine parameters are used, but:

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
VoltageVe100Actual excitation voltage
AngularVelocityw0Modelica.SIunits.Conversions.from_rpm(1500)No-load speed
TorqueTLoad63.66Nominal load torque
InertiaJLoad0.15Load's moment of inertia
TemperatureTAmbient293.15Ambient temperature
HeatCapacityCa20Armature's heat capacity
HeatCapacityCc50Core's heat capacity
final PowerLossesdcpm.Ra * dcpm.IaNominal ^ 2Nominal Losses
final TemperatureT0293.15Reference temperature 20 degC
final TemperatureDifferencedTCoolant10Coolant's temperature rise
final TemperatureDifferencedTArmaturedcpm.TaNominal - T0 - 0.5 * dTCoolantArmature's temperature rise over coolant
ThermalConductanceG_armature_core2 * Losses / dTArmatureHeat conductance armature - core
ThermalConductanceG_core_cooling2 * Losses / dTArmatureHeat conductance core - cooling
VolumeFlowRateCoolantFlow50Coolant flow
DcPermanentMagnetDatadcpmData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_QuasiStationary
Test example: Compare DCPM motors transient - quasistationary

Information

Test example: Compare DCPM motors transient and quasistationary
The motors start at no-load speed, then load pulses are applied.
Simulate for 2 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
VoltageVe100Actual excitation voltage
AngularVelocityw0Modelica.SIunits.Conversions.from_rpm(1500)No-load speed
TorqueTLoad63.66Nominal load torque
InertiaJLoad0.15Load's moment of inertia
DcPermanentMagnetDatadcpmData  

Model Modelica.​Electrical.​Machines.​Examples.​DCMachines.​DCPM_withLosses
Test example: Investigate influence of losses on DCPM motor performance

Information

Test example: Investigate influence of losses on DCPM motor performance
Both motors are started with a voltage ramp applied to the armature, causing the DC machines to start, and accelerating inertias. Both machines are loading with a quadratic speed dependent load torque.
The first machine dcpm1 uses default machine parameters of model DC_PermanentMagnet, the second machine dcpm2 is parametrized with additional losses:
dcpm1 dcpm2
Armature voltage 100 100 V
Armature current 100 100 A
Inner voltage 95.0 94.5 V
Nominal speed 1425.0 1417.5 rpm
Armature resistance 0.05000 0.03864 Ohm
Temperature coefficient n/a 0.00392 1/K
Reference temperature n/a 20 degC
Operation temperature n/a 95 degC
Brush voltage drop n/a 0.5 V
Electrical input 10,000 10,000 W
Armature copper losses 500 500 W
Core losses n/a 200 W
Stray load losses n/a 50 W
Friction losses n/a 100 W
Brush losses n/a 50 W
Mechanical output 9,500 9,100 W
Nominal torque 63,66 61,30 Nm

Note: The reference values (voltage, current, speed) are already propagated to the loss records, using the nominal operation point.
See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVa100Actual armature voltage
TimetStart0.2Start of armature voltage ramp
TimetRamp0.8Armature voltage ramp
TorqueTLoad163.66Nominal load torque
AngularVelocitywLoad10.016666666666667 * (2850 * pi)Nominal load speed
TorqueTLoad261.3Nominal load torque
AngularVelocitywLoad20.016666666666667 * (2835 * pi)Nominal load speed
InertiaJLoad0.15Load's moment of inertia
DcPermanentMagnetDatadcpmData1  
DcPermanentMagnetDatadcpmData2