Package Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components
Components specially for electric machines

Information

Standard package icon.

Extends from Modelica.​Icons.​Package (Icon for standard packages).

Package Contents

NameDescription
PermanentMagnetPermanent magnet represented by magnetic potential difference
RotorSaliencyAirGapAir gap model with rotor saliency
SaliencyCageWindingRotor cage with saliency in d- and q-axis
SaliencyCageWinding_obsoleteRotor cage with saliency in d- and q-axis
SinglePhaseWindingSymmetric winding model coupling electrical and magnetic domain
SymmetricMultiPhaseCageWindingSymmetrical rotor cage
SymmetricMultiPhaseCageWinding_obsoleteSymmetrical rotor cage
SymmetricMultiPhaseWindingSymmetric winding model coupling electrical and magnetic domain

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SinglePhaseWinding
Symmetric winding model coupling electrical and magnetic domain

Information

The single phase winding consists of a winding resistor, a single phase electromagnetic coupling and a stray reluctance.

See also

SymmetricMultiPhaseWinding, SymmetricMultiPhaseCageWinding, SaliencyCageWinding RotorSaliencyAirGap

Parameters

TypeNameDefaultDescription
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
ResistanceRRef Winding resistance per phase at TRef
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
InductanceLsigma Winding stray inductance per phase
RealeffectiveTurns1Effective number of turns per phase
Angleorientation Orientation of the resulting fundamental wave field phasor

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
NegativeMagneticPortport_nNegative complex magnetic port
PositiveMagneticPortport_pPositive complex magnetic port
HeatPort_aheatPortWindingHeat ports of winding resistor

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SymmetricMultiPhaseWinding
Symmetric winding model coupling electrical and magnetic domain

Information

The symmetrical multi phase winding consists of a symmetrical winding resistor, a zero inductor as well as a symmetrical multi phase electromagnetic coupling and a stray reluctance and a core loss model including heat port.

See also

SinglePhaseWinding, SymmetricMultiPhaseCageWinding, SaliencyCageWinding RotorSaliencyAirGap

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
ResistanceRRef Winding resistance per phase at TRef
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
InductanceLsigma Winding stray inductance per phase
InductanceLzero Zero sequence inductance of winding
RealeffectiveTurns1Effective number of turns per phase
ConductanceGcRef Electrical reference core loss reluctance
final IntegernBaseModelica.Electrical.MultiPhase.Functions.numberOfSymmetricBaseSystems(m)Number of base systems
final IntegermBaseinteger(m / nBase)Number of phase of the base systems

Connectors

TypeNameDescription
PositivePlugplug_pPositive plug
NegativePlugplug_nNegative plug
NegativeMagneticPortport_nNegative complex magnetic port
PositiveMagneticPortport_pPositive complex magnetic port
HeatPort_aheatPortWinding[m]Heat ports of winding resistors
HeatPort_aheatPortCoreHeat port of core

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​RotorSaliencyAirGap
Air gap model with rotor saliency

Information

This salient air gap model can be used for machines with uniform air gaps and for machines with rotor saliency. The air gap model is not symmetrical towards stator and rotor since it is assumed the saliency always refers to the rotor. The saliency of the air gap is represented by a main field inductance in the d- and q-axis.

For the mechanical interaction of the air gap model with the stator and the rotor is equipped with two rotational connectors. The torques acting on both connectors have the same absolute values but different signs. The difference between the stator and the rotor angle, , is required for the transformation of the magnetic stator quantities to the rotor side.

The air gap model has two magnetic stator and two magnetic rotor ports. The magnetic potential difference and the magnetic flux of the stator (superscript s) are transformed to the rotor fixed reference frame (superscript r). The effective reluctances of the main field with respect to the d- and q-axis are considered then in the balance equations

  

according to the following figure.

Fig: Magnetic equivalent circuit of the air gap model

See also

SinglePhaseWinding, SymmetricMultiPhaseWinding, SymmetricMultiPhaseCageWinding SaliencyCageWinding

Parameters

TypeNameDefaultDescription
Integerp Number of pole pairs
SalientInductanceL0 Salient inductance of a single unchorded coil w.r.t. the fundamental wave
SalientReluctanceR_m Reluctance of the air gap model

Connectors

TypeNameDescription
PositiveMagneticPortport_spPositive complex magnetic stator port
NegativeMagneticPortport_snNegative complex magnetic stator port
PositiveMagneticPortport_rpPositive complex magnetic rotor port
NegativeMagneticPortport_rnNegative complex magnetic rotor port
Flange_aflange_aFlange of the rotor
Flange_asupportSupport at which the reaction torque is acting

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SymmetricMultiPhaseCageWinding
Symmetrical rotor cage

Information

The symmetric rotor cage model of this library does not consist of rotor bars and end rings. Instead the symmetric cage is modeled by an equivalent symmetrical winding. The rotor cage model consists of phases. If the cage is modeled by equivalent stator winding parameters, the number of effective turns, , has to be chosen equivalent to the effective number of stator turns.

See also

SinglePhaseWinding, SymmetricMultiPhaseWinding, SaliencyCageWinding, RotorSaliencyAirGap

Extends from Modelica.​Magnetic.​FundamentalWave.​Interfaces.​PartialTwoPortExtended (Two magnetic ports for graphical modeling with additional variables).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
ResistanceRRef Winding resistance per phase at TRef
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
InductanceLsigma Cage stray inductance
RealeffectiveTurns1Effective number of turns
final IntegernBaseModelica.Electrical.MultiPhase.Functions.numberOfSymmetricBaseSystems(m)Number of base systems

Connectors

TypeNameDescription
PositiveMagneticPortport_pPositive magnetic port of fundamental wave machines
NegativeMagneticPortport_nNegative magnetic port of fundamental wave machines
HeatPort_aheatPortWindingHeat ports of winding resistor

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SaliencyCageWinding
Rotor cage with saliency in d- and q-axis

Information

The salient cage model is a two axis model with two phases. The electromagnetic coupling therefore is also two phase coupling model. The angles of the two orientations are 0 and . This way an asymmetrical rotor cage with different resistances and stray inductances in d- and q-axis can be modeled.

See also

SinglePhaseWinding, SymmetricMultiPhaseWinding, SymmetricMultiPhaseCageWinding RotorSaliencyAirGap

Extends from Modelica.​Magnetic.​FundamentalWave.​Interfaces.​PartialTwoPortExtended (Two magnetic ports for graphical modeling with additional variables).

Parameters

TypeNameDefaultDescription
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
SalientResistanceRRef Salient cage resistance
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
SalientInductanceLsigma Salient cage stray inductance
RealeffectiveTurns1Effective number of turns

Connectors

TypeNameDescription
PositiveMagneticPortport_pPositive magnetic port of fundamental wave machines
NegativeMagneticPortport_nNegative magnetic port of fundamental wave machines
output RealOutputi[2]Currents out from damper
output RealOutputiRMSRMS current out from damper
output RealOutputlossPowerDamper losses
HeatPort_aheatPortWindingHeat ports of winding resistor

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​PermanentMagnet
Permanent magnet represented by magnetic potential difference

Information

Simple model of a permanent magnet, containing:

The permanent magnet is modeled by a magnetic potential difference. The internal reluctance of the permanent magnet is not taken into account. The internal reluctance needs to be modeled outside the permanent magnet model, e.g., by the total machine reluctance considered in the air gap model.

Extends from Modelica.​Magnetic.​FundamentalWave.​Sources.​ConstantMagneticPotentialDifference (Source with constant magnetic potential difference) and Modelica.​Electrical.​Machines.​Losses.​InductionMachines.​PermanentMagnetLosses (Model of permanent magnet losses dependent on current and speed).

Parameters

TypeNameDefaultDescription
ComplexMagneticPotentialDifferenceV_mComplex(re = 1, im = 0)Complex magnetic potential difference
Integerm3Number of phases
PermanentMagnetLossParameterspermanentMagnetLossParameters Permanent magnet loss parameters
BooleanuseHeatPortfalse=true, if heatPort is enabled

Connectors

TypeNameDescription
PositiveMagneticPortport_pPositive magnetic port of fundamental wave machines
NegativeMagneticPortport_nNegative magnetic port of fundamental wave machines
Flange_aflangeShaft end
Flange_asupportHousing and support
HeatPort_aheatPortOptional port to which dissipated losses are transported in form of heat

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SymmetricMultiPhaseCageWinding_obsolete
Symmetrical rotor cage

Information

The symmetric rotor cage model of this library does not consist of rotor bars and end rings. Instead the symmetric cage is modeled by an equivalent symmetrical winding. The rotor cage model consists of phases. If the cage is modeled by equivalent stator winding parameters, the number of effective turns, , has to be chosen equivalent to the effective number of stator turns.

See also

SinglePhaseWinding, SymmetricMultiPhaseWinding, SaliencyCageWinding, RotorSaliencyAirGap

Extends from Modelica.​Icons.​ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions) and Modelica.​Magnetic.​FundamentalWave.​Interfaces.​PartialTwoPortExtended (Two magnetic ports for graphical modeling with additional variables).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
ResistanceRRef Winding resistance per phase at TRef
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
InductanceLsigma Cage stray inductance
RealeffectiveTurns1Effective number of turns

Connectors

TypeNameDescription
PositiveMagneticPortport_pPositive magnetic port of fundamental wave machines
NegativeMagneticPortport_nNegative magnetic port of fundamental wave machines
HeatPort_aheatPortWindingHeat ports of winding resistor

Model Modelica.​Magnetic.​FundamentalWave.​BasicMachines.​Components.​SaliencyCageWinding_obsolete
Rotor cage with saliency in d- and q-axis

Information

The salient cage model is a two axis model with two phases. The electromagnetic coupling therefore is also two phase coupling model. The angles of the two orientations are 0 and . This way an asymmetrical rotor cage with different resistances and stray inductances in d- and q-axis can be modeled.

See also

SinglePhaseWinding, SymmetricMultiPhaseWinding, SymmetricMultiPhaseCageWinding RotorSaliencyAirGap

Extends from Modelica.​Icons.​ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions) and Modelica.​Magnetic.​FundamentalWave.​Interfaces.​PartialTwoPortExtended (Two magnetic ports for graphical modeling with additional variables).

Parameters

TypeNameDefaultDescription
BooleanuseHeatPortfalseEnable / disable (=fixed temperatures) thermal port
SalientResistanceRRef Salient cage resistance
TemperatureTRef Reference temperature of winding
LinearTemperatureCoefficient20alpha20 Temperature coefficient of winding at 20 degC
final LinearTemperatureCoefficientalphaRefModelica.Electrical.Machines.Thermal.convertAlpha(alpha20, TRef, 293.15) 
TemperatureTOperational Operational temperature of winding
SalientInductanceLsigma Salient cage stray inductance
RealeffectiveTurns1Effective number of turns

Connectors

TypeNameDescription
PositiveMagneticPortport_pPositive magnetic port of fundamental wave machines
NegativeMagneticPortport_nNegative magnetic port of fundamental wave machines
output RealOutputi[2]Currents out from damper
output RealOutputlossPowerDamper losses
HeatPort_aheatPortWindingHeat ports of winding resistor