fminsearch
Find the unconstrained minimum of a real function using the Nelder-Mead simplex algorithm.
Syntax
x = fminsearch(@func,x0)
x = fminsearch(@func,x0,options)
[x,fval,info,output] = fminsearch(...)
Inputs
- func
 - The function to minimize.
 - x0
 - An estimate of the location of the minimum.
 - options
 - A struct containing option settings.
 
Outputs
- x
 - The location of the function minimum.
 - fval
 - The minimum of the function.
 - info
 - The convergence status flag.
- info = 1
 - Function value converged to within tolX.
 - info = 0
 - Reached maximum number of iterations or function calls.
 
 - output
 - A struct containing iteration details. The members are as follows:
- iterations
 - The number of iterations.
 - nfev
 - The number of function evaluations.
 - xiter
 - The candidate solution at each iteration.
 - fvaliter
 - The objective function value at each iteration.
 
 
Examples
function obj = Rosenbrock(x)
    obj = (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2;
end
x0 = [-1.2, 1.0];
[x,fval] = fminsearch(@Rosenbrock, x0)x = [Matrix] 1 x 2
1.00000  1.00000
fval = 5.29978e-14function obj = Rosenbrock2(x, offset)
    obj = (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2 + offset;
end
handle = @(x) Rosenbrock2(x, 2);
[x,fval] = fminsearch(handle, interval)x = [Matrix] 1 x 2
1.00000  1.00000
fval = 2Comments
fminsearch uses the Nelder-Mead simplex algorithm, which does not require the objective function to be differentiable. When the objective function is differentiable, fminunc is generally prefereble.
- MaxIter: 400
 - MaxFunEvals: 1,000,000
 - TolX: 1.0e-7