C-Support Vector Classification.
    Syntax
      parameters = svcfit(X,y)
      parameters = svcfit(X,y,options)
    Inputs
      
      
        
          - X
 
          - Training data.
 
          - Type: double
 
          - Dimension: vector | matrix
 
        
        
          - y
 
          - Target values.
 
          - Type: double
 
          - Dimension: vector | matrix
 
        
		
          - options
 
          - Type: struct
 
          - 
            
              
                - C
 
                - Penalty parameter C of the error term (default: 1).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - kernel
 
                - Kernel type to be used in the algorithm. Allowed values are 'linear', 'poly', 'rbf' (default), 'sigmoid'.
 
                - Type: char
 
				- Dimension: string
 
              
			  
                - degree
 
                - Degree of the polynomial kernel function ('poly'). This parameter is ignored by other kernels. Default: 3
 
                - Type: integer
 
				- Dimension: scalar
 
              
			  
                - gamma
 
                - Kernel coefficient for 'rbf', 'poly' and 'sigmoid' kernel. Allowed values are any float. If gamma is not assigned, then 1 / (n_features * variance(X)) is taken as gamma.
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - coef0
 
                - Independent term in kernel function (default: 0). It is only significant in 'poly' and 'sigmoid'.
 
                - Type: double | integer
 
				- Dimension: scalar
 
              
			  
                - shrinking
 
                - Whether to use the shrinking heuristic.
 
                - Type: Boolean
 
				- Dimension: double | integer
 
              
			  
                - tol
 
                - Tolerance of stopping criterion (default: 1e-3).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - cache_size
 
                - Specify the size of kernel cache (in MB).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - max_iter
 
                - Hard limit on iterations within solver (default: -1).
 
                - Type: integer
 
				- Dimension: scalar
 
              
            
           
        
      
      
    
    Outputs
      
      
        
          - parameters
 
          - Contains all the values passed to svcfit method as options. Additionally it has below key-value pairs.
 
		  - Type: struct
 
		  - 
            
              
                - scorer
 
                - Function handle pointing to 'accuracy' function.
 
                - Type: function handle
 
              
			  
                - support
 
                - Indices of support vectors.
 
                - Type: integer
 
				- Dimension: vector
 
              
			  
                - support_vectors
 
                - Support vectors.
 
                - Type: double
 
				- Dimension: matrix
 
              
			  
                - dual_coef
 
                - Coefficients of the support vector in the decision function.
 
                - Type: integer
 
				- Dimension: matrix
 
              
			  
                - intercept
 
                - Constants in decision function.
 
                - Type: double
 
				- Dimension: matrix
 
              
			  
                - coef
 
                - Weights assigned to features (coefficients in primal problem). This is available only if kernel is set to 'linear'. It is derived from dual_coef and support_vectors.
 
                - Type: double
 
				- Dimension: vector
 
              
			  
                - n_samples
 
                - Number of rows in the training data.
 
                - Type: integer
 
				- Dimension: scalar
 
              
			  
                - n_features
 
                - Number of columns in the training data.
 
                - Type: integer
 
				- Dimension: scalar
 
              
            
           
        
      
      
    
    Example
      
      Usage of svcfit
      data = dlmread('digits.csv', ',');
X = data(:, 1:end-1);
y = data(:, end);
parameters = svcfit(X, y)
      parameters = struct [
  C: 1
  coef: [Matrix] 45 x 64
  ...
	  
    
	Comments
      
      The implementation is based on libsvm. The fit time complexity is more than quadratic with number of samples. This makes it hard to scale to dataset with more than a couple of 10000 samples. Multiclass support is handled by one-vs-one scheme. 
	Output 'parameters' should be passed as input to svcpredict function