Epsilon-Support Vector regression.
    Syntax
      parameters = svrfit(X,y)
      parameters = svrfit(X,y,options)
    Inputs
      
      
        
          - X
 
          - Training data.
 
          - Type: double
 
          - Dimension: vector | matrix
 
        
        
          - y
 
          - Target values.
 
          - Type: double
 
          - Dimension: vector | matrix
 
        
		
          - options
 
          - Type: struct
 
          - 
            
			  
                - kernel
 
                - Kernel type to be used in the algorithm. Allowed values are 'linear' (default), 'poly', 'rbf', 'sigmoid'.
 
                - Type: char
 
				- Dimension: string
 
              
              
                - degree
 
                - Degree of the polynomial kernel function ('poly') (default: 3). This parameter is ignored by other kernels.
 
                - Type: integer
 
				- Dimension: scalar
 
              
			  
                - gamma
 
                - Kernel coefficient for 'rbf', 'poly' and 'sigmoid' kernel. Allowed values are any float. If gamma is not assigned, then 1 / (n_features * variance(X)) is taken as gamma.
 
                - Type: char
 
				- Dimension: string
 
              
			  
                - coef0
 
                - Independent term in kernel function (default: 0). It is only significant in 'poly' and 'sigmoid'.
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - tol
 
                - Tolerance of stopping criterion (default: 1e-3).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - C
 
                - Penalty parameter C of the error term (default: 1).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - epsilon
 
                - Epsilon in Epsilon-SVR model (default: 0.1). It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value.
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - shrinking
 
                - Whether to use the shrinking heuristic (default: true).
 
                - Type: Boolean
 
				- Dimension: logical
 
              
			  
                - cache_size
 
                - Specify the size of kernel cache (in MB).
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - cache_size
 
                - Hard limit on iterations within solver (default: -1, which means no limit).
 
                - Type: integer
 
				- Dimension: scalar
 
              
            
           
        
      
      
    
    Outputs
      
      
        
          - parameters
 
          - Contains all the values passed to svrfit method as options. Additionally it has below key-value pairs.
 
		  - Type: struct
 
		  - 
            
              
                - scorer
 
                - Function handle pointing to r2 function (R2 Coefficient of Determination).
 
                - Type: function handle
 
              
			  
                - n_samples
 
                - Number of rows in the training data.
 
                - Type: integer
 
				- Dimension: scalar
 
              
			  
                - n_features
 
                - Number of columns in the training data.
 
                - Type: integer
 
				- Dimension: scalar
 
              
			  
                - support
 
                - Indices of support vectors.
 
                - Type: integer
 
				- Dimension: vector
 
              
			  
                - support_vectors
 
                - Support vectors.
 
                - Type: double
 
				- Dimension: vector | matrix
 
              
			  
                - dual_coef
 
                - Coefficients of the support vector in the decision function.
 
                - Type: integer
 
				- Dimension: vector
 
              
			  
                - intercept
 
                - Constants in decision function.
 
                - Type: double
 
				- Dimension: scalar
 
              
			  
                - coef
 
                - Weights assigned to features (coefficients in primal problem). This is available only if kernel is set to 'linear'. It is derived from dual_coef and support_vectors.
 
                - Type: double
 
				- Dimension: vector
 
              
            
           
        
      
      
    
    Example
      
      Usage of svrfit with options
      X = [1 2 3; 4 5 6; 7 8 9; 10 11 12; 13 14 15; 16 17 18; 19 20 21];
y = [1, 2, 3, 4, 5, 6, 7];
options = struct;
options.kernel = 'poly';
options.degree = 3;
parameters = svrfit(X, y, options)
      parameters = struct [
  C: 1
  coef0: 0
  degree: 3
  dual_coef: [Matrix] 1 x 7 Row[1] Columns[1:5]
  -1.00000 -1.00000 0.18977 1.00000 1.00000 
  Row[1] Columns[6:7]
  0.81023 -1.00000
  epsilon: 0.1
  gamma: scale
  intercept: 2.3423911
  kernel: poly
  max_iter: -1
  model_name: model_16353129739498596
  n_features: 3
  n_samples: 7
  scorer: @r2
  shrinking: 1
  support: [Matrix] 1 x 7
  0 1 2 3 4 5 6
  support_vectors: [Matrix] 7 x 3
  1 2 3
  4 5 6
  7 8 9
  10 11 12
  13 14 15
  16 17 18
  19 20 21
  tol: 0.001
]
  
    
	Comments
      
      Output 'parameters' can be passed to svrpredict function.