fminbnd
Find the minimum of a univariate real function within an interval.
Syntax
x = fminbnd(@func,interval)
x = fminbnd(@func,interval,options)
[x,fval,info,output] = fminbnd(...)
Inputs
- func
 - The function to minimize.
 - interval
 - A two-element vector containing the interval on which to minimize.
 - options
 - A struct containing option settings.
 
Outputs
- x
 - The location of the function minimum.
 - fval
 - The minimum of the function.
 - info
 - The convergence status flag.
- info = 1
 - Function value converged to within tolX.
 - info = 0
 - Reached maximum number of iterations or function calls.
 
 - output
 - A struct containing iteration details. The members are as follows:
- iterations
 - The number of iterations.
 - nfev
 - The number of function evaluations.
 - xiter
 - The function values of the interval end points at each iteration.
 - fvaliter
 - The interval end points at each iteration.
 
 
Examples
function y = func(x)
    y = -log(x) / x;
end
interval = [1, 6];
[x,fval] = fminbnd(@func, interval)x = 2.71828183
fval = -0.367879441function y = func(x, offset)
    y = -log(x) / x + offset;
end
handle = @(x) func(x, 2);
[x,fval] = fminbnd(handle, interval)x = 2.71828183
fval = 1.63212056Comments
fminbnd implements Brent's method for minimization without derivatives.
Options for convergence tolerance controls are specified with optimset.
To pass additional parameters to a function argument, use an anonymous function.
- MaxIter: 400
 - MaxFunEvals: 1,000,000
 - TolX: 1.0e-7