Version: September 2011 Edition
List of Classification Parameters
Evaluation Distance
Reference distance to find the evaluation location from the weld element
at which the stress values are extracted.
Weld Width
Width of the weld material from the web wall. This parameter is ignored
if specifying the evaluation distance is done manually.
Grinding Bonus
Parameter to specify if the grinding bonus has to be considered or
not.
Effective Weld Thickness
This parameter is used to consider the influence of welds which do not
cover the same cross section area as indicated by the shell element in
the respective evaluation location. It modifies the stress at the
evaluation location based on the ratio to the shell thickness. (a >
0)
A
r
=
T
i
·
T
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk
hacqGH9aqpcaWGubWaaSbaaSqaaiaadMgaaeqaaOGaeS4JPFMaamiv
amaaBaaaleaacaWGMbaabeaaaaa@3F13@
T
i
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaabaaa
aaaaaapeGaamyAaaaa@37DA@
: Thickness influence represents
the resultant maximum weld thickness. It varies based on the
weld type. this parameter is location specific.
T
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
qacaWGubGaamOzaaaa@37D7@
: Indicates which shell thickness
you need for the calculation of effective weld thickness ( a ).
Valid options are t and tmin , also location specific.
t = thickness of welded shell. tmin = min thickness
of all connected shells.
Mean Stress Sensitivity – Normal
Mean stress sensitivity factor used for the normal direction
evaluation.
Mean Stress Sensitivity – Shear
Mean stress sensitivity factor used for the shear direction
evaluation.
Notch Class - Transverse Location_X
Notch class definition considered for the fatigue limit calculation for
the normal stress component in the transverse direction (perpendicular
to the axis of the weld) at ‘X’.
Notch Class - Longitudinal Location_X:
Notch class definition considered for the fatigue limit calculation for
the normal stress component in the longitudinal direction (parallel to
the axis of the weld) at ‘X’.
Notch Class - Shear Location_X
Notch class definition considered for the shear stress component at
‘X’.Note: Where ‘X’ can be any evaluation location.
Material Yield - Location_X
Material yield value used for the static evaluation.
Groove Gap (b)
Gap between the two plates at the location of weld. b in Figure 1 .
Groove Depth (h)
Height of the groove from the top, calculated as t - c from Figure 1 .
Groove Angle (alpha - deg)
Angle of the groove/plate walls at the location of weld. a in Figure 1 .
Figure 1.
Formulation
Stress Component considered for evaluation
σT : Transverse component perpendicular to the axis of the
weld
σL : Longitudinal component parallel to the axis of the
weld
τ: Shear Component
Corrected stress calculation
The stress value correction is carried out using the effective weld
thickness.
Calculation of the Assessment stress value (numerator in utilization
formulae)
σTA (Stress Amplitude) = (σTmax -
σTmin ) / 2
The stress amplitude is used as the
numerator for the utilization calculation.
Fatigue Limit Calculation
The fatigue limit values (σTzul , σLzul , and
τzul ), are calculated based on the following regimes of
Stress Ratio ®,
Reference: the DVS1608 regulation document section 7.2.2.
For nominal stress (longitudinal σLzul and transverse
σTzul )
Regime 1:
R
σ
> 1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
aaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qa
cqGH+aGpcaqGGaGaaGymaaWdaiaawIcacaGLPaaaaaa@3D1F@
σ
z
u
l
=
54
⋅
1.04
−
x
M
P
a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGynaiaaisdacqGHflY1caaIXaGaaiOlaiaaicdaca
aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
peGaamytaiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@4951@
Regime 2:
−
∞
≤
R
σ
≤
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
aaaaaaaaWdbiabgkHiTiaabccacqGHEisPcaqGGaGaeyizImQaaeii
aiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qacqGHKjYOca
qGGaGaaGimaaWdaiaawIcacaGLPaaaaaa@43C7@
σ
z u l
= 46 ⋅
1.04
− x
1
1 +
M
σ
1 +
R
σ
1 −
R
σ
M P a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGinaiaaiAdacqGHflY1caaIXaGaaiOlaiaaicdaca
aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb
WdamaaBaaaleaapeGaeq4WdmhapaqabaGcpeWaaSaaa8aabaWdbiaa
igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeq4Wdmhapaqabaaake
aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aa
beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam
iuaiaadggaaiaawIcacaGLPaaaaaa@5A39@
Regime 3:
0
<
R
σ
<
0.5
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
aaaaaaaaWdbiaaicdacaqGGaGaeyipaWJaaeiiaiaadkfapaWaaSba
aSqaa8qacqaHdpWCa8aabeaak8qacqGH8aapcaqGGaGaaGimaiaac6
cacaaI1aaapaGaayjkaiaawMcaaaaa@418F@
σ
z u l
= 42 ⋅
1.04
− x
1
1 +
M
σ
3
1 +
R
σ
1 −
R
σ
M P a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGinaiaaikdacqGHflY1caaIXaGaaiOlaiaaicdaca
aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkdaWcaa
WdaeaapeGaamyta8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWd
biaaiodaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaey4kaS
IaamOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWdbiaaigda
cqGHsislcaWGsbWdamaaBaaaleaapeGaeq4WdmhapaqabaaaaaGcpe
GaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaWdaeaapeGaamyt
aiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@5CC9@
Regime 4:
0.5
≤
R
σ
<
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
aaaaaaaaWdbiaaicdacaGGUaGaaGynaiaabccacqGHKjYOcaqGGaGa
amOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaOWdbiabgYda8iaabc
cacaaIXaaapaGaayjkaiaawMcaaaaa@4241@
σ
z u l
= 36.5 ⋅
1.04
− x
M P a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaG4maiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca
GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa
a@4AC2@
M
τ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@
is the mean stress sensitivity, the
exponent x in the above equations is queried from the below notch detail
tables:
Curve
B
B-
B+
C
C-
C+
D
D-
x
6
7
8
9
10
11
12
13
Curve
E1+
E1
E1-
E4+
E4
E4-
E5+
E5
E5-
E6+
E6
E6-
X
14
15
16
17
18
19
20
21
22
23
24
25
Curve
F1+
F1
F2
x
26
27
28
For shear stress,
τ
z
u
l
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
qacqaHepaDpaWaaSbaaSqaa8qacaWG6bGaamyDaiaadYgaa8aabeaa
aaa@3B1C@
,
Regime 2:
( − 1 ≤
R
τ
≤ 0 )
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa
aaaaWdbiabgkHiTiaaigdacaqGGaGaeyizImQaaeiiaiaadkfapaWa
aSbaaSqaa8qacqaHepaDa8aabeaak8qacqGHKjYOcaqGGaGaaGima8
aacaGGPaaaaa@4235@
τ
z
u
l
=
28
⋅
1.04
−
x
1
1
+
M
τ
1
+
R
τ
1
−
R
τ
M
P
a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGOmaiaaiIdacqGHflY1caaIXaGaaiOlaiaaicdaca
aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb
WdamaaBaaaleaapeGaeqiXdqhapaqabaGcpeWaaSaaa8aabaWdbiaa
igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaake
aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8aa
beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam
iuaiaadggaaiaawIcacaGLPaaaaaa@5A41@
Regime 3:
(
0
<
R
τ
<
0.5
)
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa
aaaaaapeGaaGimaiaabccacqGH8aapcaqGGaGaamOua8aadaWgaaWc
baWdbiabes8a0bWdaeqaaOWdbiabgYda8iaabccacaaIWaGaaiOlai
aaiwdapaGaaiykaaaa@4161@
τ
z u l
= 26.5 ⋅
1.04
− x
1
1 +
M
τ
3
1 +
R
τ
1 −
R
τ
M P a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGOmaiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca
GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
kmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai
abgUcaRmaalaaapaqaa8qacaWGnbWdamaaBaaaleaapeGaeqiXdqha
paqabaaakeaapeGaaG4maaaadaqadaWdaeaapeWaaSaaa8aabaWdbi
aaigdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaa
keaapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8
aabeaaaaaak8qacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaabmaa
paqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaaa@5E44@
Regime 4:
(
R
τ
≥
0.5
)
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa
aaaaaapeGaamOua8aadaWgaaWcbaWdbiabes8a0bWdaeqaaOWdbiab
gwMiZkaabccacaaIWaGaaiOlaiaaiwdapaGaaiykaaaa@3F1F@
τ
z u l
= 24.4 ⋅
1.04
− x
M P a
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
peGaeyypa0JaaGOmaiaaisdacaGGUaGaaGinaiabgwSixlaaigdaca
GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa
a@4AC0@
M
τ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@
is the mean stress sensitivity, the
exponent x in the above equations is queried from the below notch detail
table:
The grinding bonus and the thickness factor is applied to the
calculated fatigue limit for longitudinal and transverse and just the
thickness factor to the calculated shear fatigue limit.
Utilization Factor Calculation
UT = σTA /
σTzul
UL =
σLA /
σLzul
Uτ =
τA / τzul
Resultant Utilization Calculation
U
R
=
(
U
T
)
2
+
(
U
L
)
2
+
(
U
τ
)
2
+ (
U
T
X
U
L
)
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa
aaleaacaWGsbaabeaakiabg2da9maakeaabaGaaiikaiaadwfadaWg
aaWcbaGaamivaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey
4kaSIaaiikaiaadwfadaWgaaWcbaGaamitaaqabaGccaGGPaWaaWba
aSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadwfadaWgaaWcbaGaeq
iXdqhabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG
OaGaamyvamaaBaaaleaacaWGubaabeaakiaadIfacaWGvbWaaSbaaS
qaaiaadYeaaeqaaOGaaiykaaWcbaGaaGOmaaaaaaa@4FE0@