Version: September 2011 Edition
         
        List of Classification Parameters 
            
            
                
                    
                        Evaluation Distance 
                        Reference distance to find the evaluation location from the weld element
                            at which the stress values are extracted. 
                    
                    
                        Weld Width 
                        Width of the weld material from the web wall. This parameter is ignored
                            if specifying the evaluation distance is done manually.
 
                    
                    
                        Grinding Bonus 
                        Parameter to specify if the grinding bonus has to be considered or
                            not. 
                    
                    
                        Effective Weld Thickness 
                        This parameter is used to consider the influence of welds which do not
                            cover the same cross section area as indicated by the shell element in
                            the respective evaluation location. It modifies the stress at the
                            evaluation location based on the ratio to the shell thickness. (a >
                            0) 
                        
                            
                                
                                    
                                        
                                            
                                                A 
                                                r 
                                                = 
                                                
                                                  T 
                                                  i 
                                                 
                                                · 
                                                
                                                  T 
                                                  f 
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk
                                                hacqGH9aqpcaWGubWaaSbaaSqaaiaadMgaaeqaaOGaeS4JPFMaamiv
                                                amaaBaaaleaacaWGMbaabeaaaaa@3F13@  
                                         
                                     
                                 
                             
                            
                                
                                            
                                                
                                                  
                                                  T 
                                                  i 
                                                   
                                                  MathType@MTEF@5@5@+=
                                                  feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                  4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                  vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                  fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaabaaa
                                                  aaaaaapeGaamyAaaaa@37DA@  
                                                 
                                             
                                         : Thickness influence represents
                                    the resultant maximum weld thickness. It varies based on the
                                    weld type. this parameter is location specific.
                                            
                                                
                                                  
                                                  T 
                                                  f 
                                                   
                                                  MathType@MTEF@5@5@+=
                                                  feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                  4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                  vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                  fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
                                                  qacaWGubGaamOzaaaa@37D7@  
                                                 
                                             
                                         : Indicates which shell thickness
                                    you need for the calculation of effective weld thickness ( a ).
                                    Valid options are t and tmin , also location specific.
                                    t = thickness of welded shell. tmin  = min thickness
                                    of all connected shells. 
                         
                        
                            
                         
                    
                    
                        Mean Stress Sensitivity – Normal 
                        Mean stress sensitivity factor used for the normal direction
                            evaluation. 
                    
                    
                        Mean Stress Sensitivity – Shear 
                        Mean stress sensitivity factor used for the shear direction
                            evaluation. 
                    
                    
                        Notch Class - Transverse Location_X 
                        Notch class definition considered for the fatigue limit calculation for
                            the normal stress component in the transverse direction (perpendicular
                            to the axis of the weld) at ‘X’. 
                    
                    
                        Notch Class - Longitudinal Location_X: 
                         Notch class definition considered for the fatigue limit calculation for
                            the normal stress component in the longitudinal direction (parallel to
                            the axis of the weld) at ‘X’. 
                    
                    
                        Notch Class - Shear Location_X 
                        Notch class definition considered for the shear stress component at
                                ‘X’.Note:  Where ‘X’ can be any evaluation location.
 
                    
                    
                        Material Yield - Location_X 
                        Material yield value used for the static evaluation. 
                    
                    
                        Groove Gap (b) 
                        Gap between the two plates at the location of weld. b in Figure 1 . 
                    
                    
                        Groove Depth (h) 
                        Height of the groove from the top, calculated as t - c from Figure 1 . 
                    
                    
                        Groove Angle (alpha - deg) 
                        Angle of the groove/plate walls at the location of weld. a in Figure 1 . 
 
                    
                 
             
            
                
                Figure 1.   
        Formulation 
            
            
                
                    Stress Component considered for evaluation 
                    
                        
                            σT : Transverse component perpendicular to the axis of the
                                weld 
                            σL : Longitudinal component parallel to the axis of the
                                weld 
                            τ: Shear Component 
                         
                     
                
                
                    Corrected stress calculation 
                    The stress value correction is carried out using the effective weld
                            thickness.
 
                
                
                    Calculation of the Assessment stress value (numerator in utilization
                        formulae) 
                    σTA  (Stress Amplitude) = (σTmax  -
                                σTmin ) / 2The stress amplitude is used as the
                            numerator for the utilization calculation.
Fatigue Limit Calculation 
                    
                        The fatigue limit values (σTzul , σLzul , and
                                τzul ), are calculated based on the following regimes of
                            Stress Ratio ®,
                        Reference: the DVS1608 regulation document section 7.2.2.
                        For nominal stress (longitudinal σLzul  and transverse
                                σTzul )
                        Regime 1: 
                            
                                
                                    
                                        
                                            
                                                R 
                                                σ 
                                             
                                            >   1  
                                      
                                MathType@MTEF@5@5@+=
                                    feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                    hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                    4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                    vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                    fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
                                    aaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qa
                                    cqGH+aGpcaqGGaGaaGymaaWdaiaawIcacaGLPaaaaaa@3D1F@
                                 
                             
                         
                        
                                
                                    
                                        
                                            
                                                
                                                  σ 
                                                  
                                                  z 
                                                  u 
                                                  l 
                                                   
                                                 
                                                = 
                                                54 
                                                ⋅ 
                                                
                                                  
                                                  1.04 
                                                   
                                                  
                                                  − 
                                                  x 
                                                   
                                                 
                                                
                                                  
                                                  M 
                                                  P 
                                                  a 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGynaiaaisdacqGHflY1caaIXaGaaiOlaiaaicdaca
                                                aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
                                                peGaamytaiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@4951@
                                             
                                         
                                     
                                 
                             Regime 2: 
                                    
                                        
                                            
                                                
                                                  
                                                  − 
                                                    
                                                  ∞ 
                                                    
                                                  ≤ 
                                                    
                                                  
                                                  R 
                                                  σ 
                                                   
                                                  ≤ 
                                                    
                                                  0 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
                                                aaaaaaaaWdbiabgkHiTiaabccacqGHEisPcaqGGaGaeyizImQaaeii
                                                aiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qacqGHKjYOca
                                                qGGaGaaGimaaWdaiaawIcacaGLPaaaaaa@43C7@
                                             
                                         
                                     
                                 
                                    
                                        
                                            
                                                
                                                    σ 
                                                    
                                                        z u l  
                                                 
                                                = 46 ⋅ 
                                                    
                                                        1.04  
                                                    
                                                        − x  
                                                 
                                                
                                                    
                                                        
                                                            1 
                                                            
                                                                1 + 
                                                                    M 
                                                                    σ 
                                                                 
                                                                
                                                                    
                                                                        1 + 
                                                                            R 
                                                                            σ 
                                                                         
                                                                     
                                                                    
                                                                        1 − 
                                                                            R 
                                                                            σ 
                                                                         
                                                                     
                                                                 
                                                             
                                                         
                                                     
                                                 
                                                    
                                                        M P a  
                                                  
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGinaiaaiAdacqGHflY1caaIXaGaaiOlaiaaicdaca
                                                aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
                                                peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb
                                                WdamaaBaaaleaapeGaeq4WdmhapaqabaGcpeWaaSaaa8aabaWdbiaa
                                                igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeq4Wdmhapaqabaaake
                                                aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aa
                                                beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam
                                                iuaiaadggaaiaawIcacaGLPaaaaaa@5A39@
                                             
                                         
                                     
                                     Regime 3: 
                                    
                                        
                                            
                                                
                                                  
                                                  0 
                                                    
                                                  < 
                                                    
                                                  
                                                  R 
                                                  σ 
                                                   
                                                  < 
                                                    
                                                  0.5 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
                                                aaaaaaaaWdbiaaicdacaqGGaGaeyipaWJaaeiiaiaadkfapaWaaSba
                                                aSqaa8qacqaHdpWCa8aabeaak8qacqGH8aapcaqGGaGaaGimaiaac6
                                                cacaaI1aaapaGaayjkaiaawMcaaaaa@418F@  
                                         
                                     
                                 
                                    
                                        
                                            
                                                
                                                    σ 
                                                    
                                                        z u l  
                                                 
                                                = 42 ⋅ 
                                                    
                                                        1.04  
                                                    
                                                        − x  
                                                 
                                                
                                                    
                                                        
                                                            1 
                                                            
                                                                1 + 
                                                                    
                                                                        
                                                                            M 
                                                                            σ 
                                                                         
                                                                     
                                                                    3 
                                                                 
                                                                
                                                                    
                                                                        
                                                                            
                                                                                1 + 
                                                                                    R 
                                                                                    σ 
                                                                                 
                                                                             
                                                                            
                                                                                1 − 
                                                                                    R 
                                                                                    σ 
                                                                                 
                                                                             
                                                                         
                                                                     
                                                                  
                                                         
                                                     
                                                 
                                                    
                                                        M P a  
                                                  
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGinaiaaikdacqGHflY1caaIXaGaaiOlaiaaicdaca
                                                aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
                                                peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkdaWcaa
                                                WdaeaapeGaamyta8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWd
                                                biaaiodaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaey4kaS
                                                IaamOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWdbiaaigda
                                                cqGHsislcaWGsbWdamaaBaaaleaapeGaeq4WdmhapaqabaaaaaGcpe
                                                GaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaWdaeaapeGaamyt
                                                aiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@5CC9@
                                             
                                         
                                     
                                     Regime 4: 
                                    
                                        
                                            
                                                
                                                  
                                                  0.5 
                                                    
                                                  ≤ 
                                                    
                                                  
                                                  R 
                                                  σ 
                                                   
                                                  < 
                                                    
                                                  1 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa
                                                aaaaaaaaWdbiaaicdacaGGUaGaaGynaiaabccacqGHKjYOcaqGGaGa
                                                amOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaOWdbiabgYda8iaabc
                                                cacaaIXaaapaGaayjkaiaawMcaaaaa@4241@  
                                         
                                     
                                 
                                    
                                        
                                            
                                                
                                                    σ 
                                                    
                                                        z u l  
                                                 
                                                = 36.5 ⋅ 
                                                    
                                                        1.04  
                                                    
                                                        − x  
                                                 
                                                
                                                    
                                                        M P a  
                                                  
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaG4maiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca
                                                GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
                                                kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa
                                                a@4AC2@
                                             
                                         
                                     
                                     
                                    
                                        
                                            
                                                
                                                  M 
                                                  τ 
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@
                                             
                                         
                                     
                                  is the mean stress sensitivity, the
                            exponent x in the above equations is queried from the below notch detail
                            tables:
                        
                            
                                        
                                            Curve 
                                            B 
                                            B- 
                                            B+ 
                                            C 
                                            C- 
                                            C+ 
                                            D 
                                            D- 
                                         
                                        
                                            x 
                                            6 
                                            7 
                                            8 
                                            9 
                                            10 
                                            11 
                                            12 
                                            13 
                                         
                                     
                                        
                                            Curve 
                                            E1+ 
                                            E1 
                                            E1- 
                                            E4+ 
                                            E4 
                                            E4- 
                                            E5+ 
                                            E5 
                                            E5- 
                                            E6+ 
                                            E6 
                                            E6- 
                                         
                                        
                                            X 
                                            14 
                                            15 
                                            16 
                                            17 
                                            18 
                                            19 
                                            20 
                                            21 
                                            22 
                                            23 
                                            24 
                                            25 
                                         
                                     
                                        
                                            Curve 
                                            F1+ 
                                            F1 
                                            F2 
                                         
                                        
                                            x 
                                            26 
                                            27 
                                            28 
                                         
                                     
 
                        For shear stress, 
                                    
                                        
                                            
                                                
                                                  τ 
                                                  
                                                  z 
                                                  u 
                                                  l 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
                                                qacqaHepaDpaWaaSbaaSqaa8qacaWG6bGaamyDaiaadYgaa8aabeaa
                                                aaa@3B1C@  
                                         
                                     
                                 ,
                        Regime 2: 
                            
                                
                                    ( − 1   ≤   
                                        R 
                                        τ 
                                     
                                    ≤   0 )  
                                MathType@MTEF@5@5@+=
                                    feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                    hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                    4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                    a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                    0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa
                                    aaaaWdbiabgkHiTiaaigdacaqGGaGaeyizImQaaeiiaiaadkfapaWa
                                    aSbaaSqaa8qacqaHepaDa8aabeaak8qacqGHKjYOcaqGGaGaaGima8
                                    aacaGGPaaaaa@4235@
                                 
                             
                         
                        
                                
                                    
                                        
                                            
                                                
                                                  τ 
                                                  
                                                  z 
                                                  u 
                                                  l 
                                                   
                                                 
                                                = 
                                                28 
                                                ⋅ 
                                                
                                                  
                                                  1.04 
                                                   
                                                  
                                                  − 
                                                  x 
                                                   
                                                 
                                                
                                                  
                                                  
                                                  1 
                                                  
                                                  1 
                                                  + 
                                                  
                                                  M 
                                                  τ 
                                                   
                                                  
                                                  
                                                  1 
                                                  + 
                                                  
                                                  R 
                                                  τ 
                                                   
                                                   
                                                  
                                                  1 
                                                  − 
                                                  
                                                  R 
                                                  τ 
                                                   
                                                   
                                                   
                                                   
                                                   
                                                   
                                                 
                                                
                                                  
                                                  M 
                                                  P 
                                                  a 
                                                   
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGOmaiaaiIdacqGHflY1caaIXaGaaiOlaiaaicdaca
                                                aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa
                                                peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb
                                                WdamaaBaaaleaapeGaeqiXdqhapaqabaGcpeWaaSaaa8aabaWdbiaa
                                                igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaake
                                                aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8aa
                                                beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam
                                                iuaiaadggaaiaawIcacaGLPaaaaaa@5A41@  
                                         
                                     
                                 
                             Regime 3: 
                                    
                                        
                                            
                                                ( 
                                                0 
                                                  
                                                < 
                                                  
                                                
                                                  R 
                                                  τ 
                                                 
                                                < 
                                                  
                                                0.5 
                                                ) 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa
                                                aaaaaapeGaaGimaiaabccacqGH8aapcaqGGaGaamOua8aadaWgaaWc
                                                baWdbiabes8a0bWdaeqaaOWdbiabgYda8iaabccacaaIWaGaaiOlai
                                                aaiwdapaGaaiykaaaa@4161@  
                                         
                                     
                                 
                                    
                                        
                                            
                                                
                                                    τ 
                                                    
                                                        z u l  
                                                 
                                                = 26.5 ⋅ 
                                                    
                                                        1.04  
                                                    
                                                        − x  
                                                 
                                                
                                                    
                                                        
                                                            1 
                                                            
                                                                1 + 
                                                                    
                                                                        
                                                                            M 
                                                                            τ 
                                                                         
                                                                     
                                                                    3 
                                                                 
                                                                
                                                                    
                                                                        
                                                                            
                                                                                1 + 
                                                                                    R 
                                                                                    τ 
                                                                                 
                                                                             
                                                                            
                                                                                1 − 
                                                                                    R 
                                                                                    τ 
                                                                                 
                                                                             
                                                                         
                                                                     
                                                                  
                                                         
                                                     
                                                 
                                                    
                                                        M P a  
                                                  
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGOmaiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca
                                                GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
                                                kmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai
                                                abgUcaRmaalaaapaqaa8qacaWGnbWdamaaBaaaleaapeGaeqiXdqha
                                                paqabaaakeaapeGaaG4maaaadaqadaWdaeaapeWaaSaaa8aabaWdbi
                                                aaigdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaa
                                                keaapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8
                                                aabeaaaaaak8qacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaabmaa
                                                paqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaaa@5E44@
                                             
                                         
                                     
                                     Regime 4: 
                                    
                                        
                                            
                                                ( 
                                                
                                                  R 
                                                  τ 
                                                 
                                                ≥ 
                                                  
                                                0.5 
                                                ) 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                                vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                                fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa
                                                aaaaaapeGaamOua8aadaWgaaWcbaWdbiabes8a0bWdaeqaaOWdbiab
                                                gwMiZkaabccacaaIWaGaaiOlaiaaiwdapaGaaiykaaaa@3F1F@
                                             
                                         
                                     
                                 
                                    
                                        
                                            
                                                
                                                    τ 
                                                    
                                                        z u l  
                                                 
                                                = 24.4 ⋅ 
                                                    
                                                        1.04  
                                                    
                                                        − x  
                                                 
                                                
                                                    
                                                        M P a  
                                                  
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc
                                                peGaeyypa0JaaGOmaiaaisdacaGGUaGaaGinaiabgwSixlaaigdaca
                                                GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa
                                                kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa
                                                a@4AC0@
                                             
                                         
                                     
                                     
                                    
                                        
                                            
                                                
                                                  M 
                                                  τ 
                                                 
                                             
                                            MathType@MTEF@5@5@+=
                                                feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                                hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                                4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb
                                                a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
                                                0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
                                                Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@
                                             
                                         
                                     
                                  is the mean stress sensitivity, the
                            exponent x in the above equations is queried from the below notch detail
                            table:
                        
The grinding bonus and the thickness factor is applied to the
                            calculated fatigue limit for longitudinal and transverse and just the
                            thickness factor to the calculated shear fatigue limit.
 
                     
                
                
                    Utilization Factor Calculation 
                    UT  = σTA  /
                                    σTzul UL  =
                                    σLA  /
                                    σLzul 
Uτ  =
                                    τA  / τzul 
Resultant Utilization Calculation 
                    
                        
                            
                                
                                    
                                        
                                            U 
                                            R 
                                         
                                        = 
                                            
                                                
                                                    
                                                        ( 
                                                            U 
                                                            T 
                                                         
                                                        )  
                                                    2 
                                                 
                                                + 
                                                    
                                                        ( 
                                                            U 
                                                            L 
                                                         
                                                        )  
                                                    2 
                                                 
                                                + 
                                                    
                                                        ( 
                                                            U 
                                                            τ 
                                                         
                                                        )  
                                                    2 
                                                 
                                                + ( 
                                                    U 
                                                    T 
                                                 
                                                X 
                                                    U 
                                                    L 
                                                 
                                                )  
                                            2 
                                         
                                     
                                    MathType@MTEF@5@5@+=
                                        feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
                                        hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
                                        4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
                                        vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
                                        fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa
                                        aaleaacaWGsbaabeaakiabg2da9maakeaabaGaaiikaiaadwfadaWg
                                        aaWcbaGaamivaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey
                                        4kaSIaaiikaiaadwfadaWgaaWcbaGaamitaaqabaGccaGGPaWaaWba
                                        aSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadwfadaWgaaWcbaGaeq
                                        iXdqhabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG
                                        OaGaamyvamaaBaaaleaacaWGubaabeaakiaadIfacaWGvbWaaSbaaS
                                        qaaiaadYeaaeqaaOGaaiykaaWcbaGaaGOmaaaaaaa@4FE0@