Package Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines
Examples of machines of the FundamentalWave library

Information

This icon indicates a package that contains executable examples.

Extends from Modelica.​Icons.​ExamplesPackage (Icon for packages containing runnable examples).

Package Contents

NameDescription
AIMC_ConveyorAsynchronous induction machine with squirrel cage and inverter driving a conveyor
AIMC_DOLDirect on line (DOL) start of asynchronous induction machine with squirrel cage
AIMC_DOL_MultiPhaseDirect on line start of multi phase asynchronous induction machine with squirrel cage
AIMC_InitializeSteady-state initialization of asynchronous induction machine with squirrel cage
AIMC_InverterAsynchronous induction machine with squirrel cage and inverter
AIMC_SteinmetzAsynchronous induction machine with squirrel cage and Steinmetz-connection
AIMC_TransformerAsynchronous induction machine with squirrel cage starting with transformer
AIMC_withLossesAsynchronous induction machine with squirrel cage and losses
AIMC_YDAsynchronous induction machine with squirrel cage starting Y-D
AIMS_StartStarting of asynchronous induction machine with slip rings
AIMS_Start_MultiPhaseStarting of multi phase asynchronous induction machine with slip rings
SMEE_DOLElectricalExcitedSynchronousInductionMachine starting direct on line
SMEE_GeneratorElectrical excited synchronous machine operating as generator
SMEE_Generator_MultiPhaseElectrical excited multi phase synchronous machine operating as generator
SMEE_LoadDumpTest example: ElectricalExcitedSynchronousInductionMachine with voltage controller
SMEE_RectifierTest example: ElectricalExcitedSynchronousInductionMachine with rectifier
SMPM_BrakingTest example: PermanentMagnetSynchronousInductionMachine acting as brake
SMPM_CurrentSourceTest example: PermanentMagnetSynchronousInductionMachine fed by current source
SMPM_InverterStarting of permanent magnet synchronous machine with inverter
SMPM_Inverter_MultiPhaseStarting of multi phase permanent magnet synchronous machine with inverter
SMPM_VoltageSourceTest example: PermanentMagnetSynchronousInductionMachine fed by FOC
SMR_InverterStarting of synchronous reluctance machine with inverter
SMR_Inverter_MultiPhaseStarting of multi phase synchronous reluctance machine with inverter

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_DOL
Direct on line (DOL) start of asynchronous induction machine with squirrel cage

Information

At start time tStart three phase voltage is supplied to the asynchronous induction machine with squirrel cage. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
TimetOn0.1Start time of machine
TorqueT_Load161.4Nominal load torque
AngularVelocityw_Load0.016666666666667 * (2880.9 * Modelica.Constants.pi)Nominal load speed
InertiaJ_Load0.29Load inertia
Integerp2Number of pole pairs
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_DOL_MultiPhase
Direct on line start of multi phase asynchronous induction machine with squirrel cage

Information

At start time tStart voltages are supplied to the multi phase asynchronous induction machines with squirrel cage. The machines starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm5Number of stator phases
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
TimetOn0.1Start time of machine
TorqueT_Load161.4Nominal load torque
AngularVelocityw_Load0.016666666666667 * (2880.9 * Modelica.Constants.pi)Nominal load speed
InertiaJ_Load0.29Load inertia
Integerp2Number of pole pairs
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_YD
Asynchronous induction machine with squirrel cage starting Y-D

Information

At start time tStart three phase voltage is supplied to the asynchronous induction machine with squirrel cage, first star-connected, then delta-connected; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
TimetStart10.1Start time
TimetStart22Start time from Y to D
TorqueTLoad161.4Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2880.9 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.29Load's moment of inertia
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_Transformer
Asynchronous induction machine with squirrel cage starting with transformer

Information

At start time tStart1 three phase voltage is supplied to the asynchronous induction machine with squirrel cage via the transformer; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed; at start time tStart2 the machine is fed directly from the voltage source, finally reaching nominal speed.

Simulate for 2.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
TimetStart10.1Start time
TimetStart22Start time of bypass transformer
TorqueTLoad161.4Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2880.9 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.29Load's moment of inertia
TransformerDatatransformerData  
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_Inverter
Asynchronous induction machine with squirrel cage and inverter

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the asynchronous induction machine with squirrel cage to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
FrequencyffNominalMaximum operational frequency
TimetRamp1Frequency ramp
TorqueTLoad161.4Nominal load torque
TimetStep1.2Time of load torque step
InertiaJLoad0.29Load's moment of inertia
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_Conveyor
Asynchronous induction machine with squirrel cage and inverter driving a conveyor

Information

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is driven by a load cycle of acceleration, constant speed, deceleration and standstill. The mechanical load is a constant torque like a conveyor (with regularization around zero speed).

Simulate for 20 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
AngularVelocitywNominal2 * pi * fNominal / aimcData.pNominal speed
TorqueTLoad161.4Nominal load torque
InertiaJLoad0.29Load's moment of inertia
Lengthr0.05Transmission radius
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_Steinmetz
Asynchronous induction machine with squirrel cage and Steinmetz-connection

Information

At start time tStart single phase voltage is supplied to the asynchronous induction machine with squirrel cage; the machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
TimetStart10.1Start time
CapacitanceCr0.0035Motor's running capacitor
CapacitanceCs5 * CrMotor's (additional) starting capacitor
AngularVelocitywSwitch0.016666666666667 * (2700 * Modelica.Constants.pi)Speed for switching off the starting capacitor
TorqueTLoad107.6Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2925 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.29Load's moment of inertia
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_withLosses
Asynchronous induction machine with squirrel cage and losses

Information

Current I_sim I_meas
Speed w_sim w_meas
Power factor pf_sim pf_meas
Efficiency eff_sim eff_meas

Machine parameters are taken from a standard 18.5 kW 400 V 50 Hz motor, simulation results are compared with measurements.

Nominal stator current 32.85 A
Power factor 0.898
Speed 1462.5 rpm
Electrical input 20,443.95 W
Stator copper losses 770.13 W
Stator core losses 410.00 W
Rotor copper losses 481.60 W
Stray load losses 102.22 W
Friction losses 180.00 W
Mechanical output 18,500.00 W
Efficiency 90.49 %
Nominal torque 120.79 Nm

Stator resistance per phase 0.56 Ω
Temperature coefficient copper
Reference temperature 20 °C
Operation temperature 90 °C
Stator leakage reactance at 50 Hz 1.52 Ω
Main field reactance at 50 Hz 66.40 Ω
Rotor leakage reactance at 50 Hz 2.31 Ω
Rotor resistance per phase 0.42 Ω
Temperature coefficient aluminium
Reference temperature 20 °C
Operation temperature 90 °C

See:
Anton Haumer, Christian Kral, Hansjörg Kapeller, Thomas Bäuml, Johannes V. Gragger
The AdvancedMachines Library: Loss Models for Electric Machines
Modelica 2009, 7th International Modelica Conference

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMC_Initialize
Steady-state initialization of asynchronous induction machine with squirrel cage

Information

The asynchronous induction machine with squirrel cage is initialized in steady-state at no-load; at time tStart a load torque step is applied.

Simulate for 1.5 seconds and plot (versus time):

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominalaimcData.​fsNominalNominal frequency
AngularVelocitywSync2 * pi * fNominal / aimc.p 
TimetStart0.5Start time
TorqueTLoad161.4Nominal load torque
AngularVelocitywLoad0.016666666666667 * (2880.9 * Modelica.Constants.pi)Nominal load speed
InertiaJLoad0.29Load's moment of inertia
AIM_SquirrelCageDataaimcData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMS_Start
Starting of asynchronous induction machine with slip rings

Information

At start time tOn three phase voltage is supplied to the asynchronous induction machine with sliprings. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfNominalaimsData.​fsNominalNominal frequency
TimetOn0.1Start time of machine
ResistanceRStart0.16 / aimsData.turnsRatio ^ 2Starting resistance
TimetRheostat1Time of shortening the rheostat
TorqueT_Load161.4Nominal load torque
AngularVelocityw_LoadModelica.SIunits.Conversions.from_rpm(1440.45)Nominal load speed
InertiaJ_Load0.29Load inertia
AIM_SlipRingDataaimsData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​AIMS_Start_MultiPhase
Starting of multi phase asynchronous induction machine with slip rings

Information

At start time tOn voltages are supplied to the asynchronous induction machines with sliprings. The two machine start from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm5Number of stator phases
Integermr5Number of rotor phases
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfNominalaimsData.​fsNominalNominal frequency
TimetOn0.1Start time of machine
ResistanceRStart0.16 / aimsData.turnsRatio ^ 2Starting resistance
TimetRheostat1Time of shortening the rheostat
TorqueT_Load161.4Nominal load torque
AngularVelocityw_LoadModelica.SIunits.Conversions.from_rpm(1440.45)Nominal load speed
InertiaJ_Load0.29Load inertia
AIM_SlipRingDataaimsData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMPM_Inverter
Starting of permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machine to start, and accelerate the inertias.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmpmData.​fsNominalNominal frequency
FrequencyfKnee50Knee frequency of V/f curve
TimetRamp1Frequency ramp
TorqueT_Load181.4Nominal load torque
TimetStep1.2Time of load torque step
InertiaJ_Load0.29Load inertia
SM_PermanentMagnetDatasmpmData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMPM_Inverter_MultiPhase
Starting of multi phase permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using VfControllers and SignalVoltagess. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machines to start, and accelerate the inertias. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm5Number of stator phases
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmpmData.​fsNominalNominal frequency
FrequencyfKnee50Knee frequency of V/f curve
TimetRamp1Frequency ramp
TorqueT_Load181.4Nominal load torque
TimetStep1.2Time of load torque step
InertiaJ_Load0.29Load inertia
SM_PermanentMagnetDatasmpmData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMPM_CurrentSource
Test example: PermanentMagnetSynchronousInductionMachine fed by current source

Information

A synchronous induction machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are converted to three-phase currents, and fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
CurrentIdq[2]{-53.5, 84.6}Desired d- and q-current
AngularVelocitywNominal2 * pi * smpmData.fsNominal / smpmData.pNominal speed
TorqueTLoad181.4Nominal load torque
InertiaJLoad0.29Load's moment of inertia
SM_PermanentMagnetDatasmpmData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMPM_VoltageSource
Test example: PermanentMagnetSynchronousInductionMachine fed by FOC

Information

A synchronous induction machine with permanent magnets accelerates a quadratic speed dependent load from standstill. The rms values of d- and q-current in rotor fixed coordinate system are controlled by the voltageController, and the output voltages fed to the machine. The result shows that the torque is influenced by the q-current, whereas the stator voltage is influenced by the d-current.

Default machine parameters are used

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
CurrentIdq[2]{-53.5, 84.6}Desired d- and q-current
AngularVelocitywNominal2 * pi * smpmData.fsNominal / smpmData.pNominal speed
TorqueTLoad181.4Nominal load torque
InertiaJLoad0.29Load's moment of inertia
SM_PermanentMagnetDatasmpmData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMPM_Braking
Test example: PermanentMagnetSynchronousInductionMachine acting as brake

Information

A synchronous induction machine with permanent magnets starts braking from nominal speed by feeding a diode bridge, which in turn feeds a braking resistor. Since induced voltage is reduced proportional to falling speed, the braking resistance is set proportional to speed to achieve constant current and torque.

Default machine parameters are used

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
ResistanceR1Nominal braking resistance
AngularVelocitywNominal2 * pi * smpmData.fsNominal / smpmData.pNominal speed
InertiaJLoad0.29Load's moment of inertia
SM_PermanentMagnetDatasmpmData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMEE_DOL
ElectricalExcitedSynchronousInductionMachine starting direct on line

Information

An electrically excited synchronous generator is started direct on line utilizing the damper cage (and the shorted excitation winding) at 0 seconds.

At t = 0.5 seconds, the excitation voltage is raised to achieve the no-load excitation current. Note, that reactive power of the stator goes to zero.

At t = 2 second, a driving torque step is applied to the shaft (i.e. the turbine is activated). Note, that the active (and the reactive) power of the stator change. To drive at higher torque, i.e., produce more electric power, excitation has to be adapted.

Simulate for 3 seconds and plot:

Default machine parameters are used.

Note

The mains switch is closed at time = 0 in order to avoid non physical noise calculated by the rotorDisplacementAngle. This noise is caused by the interaction of the high resistance of the switch and the machine, see #2388.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
VoltageVNominal100Nominal RMS voltage per phase
FrequencyfNominal50Nominal frequency
VoltageVesmeeData.Re * smeeData.IeOpenCircuitExcitation current
Anglegamma00Initial rotor displacement angle
SynchronousMachineDatasmeeData  

Connectors

TypeNameDescription
output RealOutputirRMSDamper cage RMS current

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMEE_Generator_MultiPhase
Electrical excited multi phase synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

Two electrically excited synchronous generators are connected to grids and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 30 seconds and plot (versus rotorAngleM3.rotorDisplacementAngle):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm5Number of stator phases
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmeeData.​fsNominalNominal frequency
AngularVelocitywModelica.SIunits.Conversions.from_rpm(1499)Nominal speed
CurrentIe19Excitation current
CurrentIe010Initial excitation current
Anglegamma00Initial rotor displacement angle
Integerp2Number of pole pairs
ResistanceRs0.03Warm stator resistance per phase
InductanceLssigma0.1 / (2 * Modelica.Constants.pi * fsNominal)Stator stray inductance per phase
InductanceLmd1.5 / (2 * Modelica.Constants.pi * fsNominal)Main field inductance in d-axis
InductanceLmq1.5 / (2 * Modelica.Constants.pi * fsNominal)Main field inductance in q-axis
InductanceLrsigmad0.05 / (2 * Modelica.Constants.pi * fsNominal)Damper stray inductance (equivalent three phase winding) d-axis
InductanceLrsigmaqLrsigmadDamper stray inductance (equivalent three phase winding) q-axis
ResistanceRrd0.04Warm damper resistance (equivalent three phase winding) d-axis
ResistanceRrqRrdWarm damper resistance (equivalent three phase winding) q-axis
SynchronousMachineDatasmeeData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMEE_Generator
Electrical excited synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

An electrically excited synchronous generator is connected to the grid and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. This allows to see several characteristics dependent on rotor angle.

Simulate for 30 seconds and plot (versus rotorAngleM.rotorDisplacementAngle):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmeeData.​fsNominalNominal frequency
AngularVelocitywModelica.SIunits.Conversions.from_rpm(1499)Nominal speed
CurrentIe19Excitation current
CurrentIe010Initial excitation current
Anglegamma00Initial rotor displacement angle
Integerp2Number of pole pairs
ResistanceRs0.03Warm stator resistance per phase
InductanceLssigma0.1 / (2 * Modelica.Constants.pi * fsNominal)Stator stray inductance per phase
InductanceLmd1.5 / (2 * Modelica.Constants.pi * fsNominal)Main field inductance in d-axis
InductanceLmq1.5 / (2 * Modelica.Constants.pi * fsNominal)Main field inductance in q-axis
InductanceLrsigmad0.05 / (2 * Modelica.Constants.pi * fsNominal)Damper stray inductance (equivalent three phase winding) d-axis
InductanceLrsigmaqLrsigmadDamper stray inductance (equivalent three phase winding) q-axis
ResistanceRrd0.04Warm damper resistance (equivalent three phase winding) d-axis
ResistanceRrqRrdWarm damper resistance (equivalent three phase winding) q-axis
SynchronousMachineDatasmeeData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMEE_LoadDump
Test example: ElectricalExcitedSynchronousInductionMachine with voltage controller

Information

An electrically excited synchronous generator is started with a speed ramp, then driven with constant speed. Voltage is controlled, the set point depends on speed. After start-up the generator is loaded, the load is rejected.

Simulate for 10 seconds and plot:

Default machine parameters are used

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
AngularVelocitywNominal2 * pi * smeeData.fsNominal / smee.pNominal speed
ImpedanceZNominal3 * smeeData.VsNominal ^ 2 / smeeData.SNominalNominal load impedance
RealpowerFactor0.8Load power factor
ResistanceRLoadZNominal * powerFactorLoad resistance
InductanceLLoadZNominal * sqrt(1 - powerFactor ^ 2) / (2 * pi * smeeData.fsNominal)Load inductance
VoltageVe0smee.IeOpenCircuit * Electrical.Machines.Thermal.convertResistance(smee.Re, smee.TeRef, smee.alpha20e, smee.TeOperational)No load excitation voltage
Realk2 * Ve0 / smeeData.VsNominalVoltage controller: gain
TimeTi0.5 * smeeData.Td0TransientVoltage controller: integral time constant
SynchronousMachineDatasmeeData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMEE_Rectifier
Test example: ElectricalExcitedSynchronousInductionMachine with rectifier

Information

An electrically excited synchronous generator is driven with constant speed. Voltage is controlled, the set point depends on speed. The generator is loaded with a rectifier.

Default machine parameters are used

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
AngularVelocitywNominal2 * pi * smeeData.fsNominal / smee.pNominal speed
VoltageVDC0sqrt(6) * smeeData.VsNominalNo-load DC voltage
ResistanceRLoadVDC0 ^ 2 / smeeData.SNominalLoad resistance
VoltageVe0smee.IeOpenCircuit * Electrical.Machines.Thermal.convertResistance(smee.Re, smee.TeRef, smee.alpha20e, smee.TeOperational)No load excitation voltage
Realk2 * Ve0 / smeeData.VsNominalVoltage controller: gain
TimeTi0.5 * smeeData.Td0TransientVoltage controller: integral time constant
SynchronousMachineDatasmeeData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMR_Inverter
Starting of synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmrData.​fsNominalNominal frequency
FrequencyfKnee50Knee frequency of V/f curve
TimetRamp1Frequency ramp
TorqueT_Load46Nominal load torque
TimetStep1.2Time of load torque step
InertiaJ_Load0.29Load inertia
SM_ReluctanceRotorDatasmrData  

Model Modelica.​Magnetic.​FundamentalWave.​Examples.​BasicMachines.​SMR_Inverter_MultiPhase
Starting of multi phase synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

Ideal frequency inverters are modeled by using a VfController and phase SignalVoltages. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.​Icons.​Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm5Number of stator phases
VoltageVsNominal100Nominal RMS voltage per phase
FrequencyfsNominalsmrData.​fsNominalNominal frequency
FrequencyfKnee50Knee frequency of V/f curve
TimetRamp1Frequency ramp
TorqueT_Load46Nominal load torque
TimetStep1.2Time of load torque step
InertiaJ_Load0.29Load inertia
SM_ReluctanceRotorDatasmrData