Package Modelica.​Thermal.​FluidHeatFlow.​Components
Basic components (pipes, valves)

Information

This package contains components.

Pressure drop is taken from partial model SimpleFriction. Thermodynamic equations are defined in partial models (package Partials).

Extends from Modelica.​Icons.​Package (Icon for standard packages).

Package Contents

NameDescription
CylinderSimple model of a piston in a cylinder
HeatedPipePipe with heat exchange
IsolatedPipePipe without heat exchange
OneWayValveSimple one-way valve
OpenTankModel of a tank under ambient pressure
PipePipe with optional heat exchange
ValveSimple valve

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​Pipe
Pipe with optional heat exchange

Information

Pipe with optional heat exchange.

Thermodynamic equations are defined by Partials.TwoPort. Q_flow is defined by heatPort.Q_flow (useHeatPort=true) or zero (useHeatPort=false).

Note: Setting parameter m (mass of medium within pipe) to zero leads to neglect of temperature transient cv*m*der(T).

Note: Injecting heat into a pipe with zero mass flow causes temperature rise defined by storing heat in medium's mass.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​TwoPort (Partial model of two port) and Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​SimpleFriction (Simple friction model).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium in the component
Massm Mass of medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
RealtapT1Defines temperature of heatPort between inlet and outlet temperature
VolumeFlowRateV_flowLaminar Laminar volume flow
PressuredpLaminar Laminar pressure drop
VolumeFlowRateV_flowNominal Nominal volume flow
PressuredpNominal Nominal pressure drop
RealfrictionLoss0Part of friction losses fed to medium
BooleanuseHeatPortfalse=true, if HeatPort is enabled
Lengthh_g Geodetic height (height difference from flowPort_a to flowPort_b)
AccelerationgModelica.​Constants.​g_nGravitation

Connectors

TypeNameDescription
FlowPort_aflowPort_a 
FlowPort_bflowPort_b 
HeatPort_aheatPort 

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​IsolatedPipe
Pipe without heat exchange

Information

This model simply extends from the Pipe model with parameter useHeatPort = false and is kept for compatibility reasons. In the future, it will be removed.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Components.​Pipe (Pipe with optional heat exchange) and Modelica.​Icons.​ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium in the component
Massm Mass of medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
RealtapT1Defines temperature of heatPort between inlet and outlet temperature
VolumeFlowRateV_flowLaminar Laminar volume flow
PressuredpLaminar Laminar pressure drop
VolumeFlowRateV_flowNominal Nominal volume flow
PressuredpNominal Nominal pressure drop
RealfrictionLoss0Part of friction losses fed to medium
final BooleanuseHeatPortfalse=true, if HeatPort is enabled
Lengthh_g Geodetic height (height difference from flowPort_a to flowPort_b)
AccelerationgModelica.​Constants.​g_nGravitation

Connectors

TypeNameDescription
FlowPort_aflowPort_a 
FlowPort_bflowPort_b 
HeatPort_aheatPort 

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​HeatedPipe
Pipe with heat exchange

Information

This model simply extends from the Pipe model with parameter useHeatPort = true and is kept for compatibility reasons. In the future, it will be removed.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Components.​Pipe (Pipe with optional heat exchange) and Modelica.​Icons.​ObsoleteModel (Icon for classes that are obsolete and will be removed in later versions).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium in the component
Massm Mass of medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
RealtapT1Defines temperature of heatPort between inlet and outlet temperature
VolumeFlowRateV_flowLaminar Laminar volume flow
PressuredpLaminar Laminar pressure drop
VolumeFlowRateV_flowNominal Nominal volume flow
PressuredpNominal Nominal pressure drop
RealfrictionLoss0Part of friction losses fed to medium
final BooleanuseHeatPorttrue=true, if HeatPort is enabled
Lengthh_g Geodetic height (height difference from flowPort_a to flowPort_b)
AccelerationgModelica.​Constants.​g_nGravitation

Connectors

TypeNameDescription
FlowPort_aflowPort_a 
FlowPort_bflowPort_b 
HeatPort_aheatPort 

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​Valve
Simple valve

Information

Simple controlled valve.

Standard characteristic Kv=f (y) is given at standard conditions (dp0, rho0),

where:

Flow resistance under real conditions is calculated by

V_flow**2 * rho / dp = Kv(y)**2 * rho0 / dp0

Extends from Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​TwoPort (Partial model of two port).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium in the component
Massm Mass of medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
final RealtapT1Defines temperature of heatPort between inlet and outlet temperature
BooleanLinearCharacteristic Type of characteristic
Realy1 Max. valve opening
VolumeFlowRateKv1 Max. flow @ y = y1
Realkv0 Leakage flow / max.flow @ y = 0
Pressuredp0 Standard pressure drop
Densityrho0 Standard medium's density
RealfrictionLoss Part of friction losses fed to medium

Connectors

TypeNameDescription
FlowPort_aflowPort_a 
FlowPort_bflowPort_b 
input RealInputy 

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​OpenTank
Model of a tank under ambient pressure

Information

This is a simple model of an open tank with volume A*h. The level and the temperature of the medium are measured and provided as output.

Note: If the level of the medium reaches 0 (minimum) or h (maximum), an assertion is triggered.

Note: The flowPort is assumed to be at the bottom. Therefore the pressure at the flowPort is ambient pressure + level*rho*g.

It is assumed that the medium in the tank has the same temperature over the whole volume, i.e. mixed thoroughly.

Via the optional heatPort the medium in the tank can be cooled or heated.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​SinglePortBottom (Partial model of a single port at the bottom).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
AreaATank Cross section of tank
LengthhTank Height of tank
PressurepAmbient Ambient pressure
AccelerationgModelica.​Constants.​g_nGravitation
BooleanuseHeatPortfalse=true, if HeatPort is enabled

Connectors

TypeNameDescription
FlowPort_aflowPort 
HeatPort_aheatPortOptional port for cooling or heating the medium in the tank
output RealOutputlevelLevel of medium in tank
output RealOutputTTankTemperature of medium in tank

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​Cylinder
Simple model of a piston in a cylinder

Information

This is a simple model of a piston in a cylinder:

The translational flange is connected to the piston, the cylinder has a flowPort at the bottom.

The position of the piston within the cylinder goes from 0 at the bottom to L (length of the cylinder) at the top of the cylinder. If the piston leaves the cylinder, an assertion is triggered.

The piston is considered without mass.

Note: Take care of the initial conditions. The position of the piston (relative to the support) should be in the range (0, L). The position of the flange (as well as of the support, if useSupport=true) is influenced by connected components.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​SinglePortLeft (Partial model of a single port at the left) and Modelica.​Mechanics.​Translational.​Interfaces.​PartialElementaryOneFlangeAndSupport2 (Partial model for a component with one translational 1-dim. shaft flange and a support used for textual modeling, i.e., for elementary models).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
AreaA Cross section of cylinder/piston
LengthL Length of cylinder
BooleanuseSupportfalse= true, if support flange enabled, otherwise implicitly grounded

Connectors

TypeNameDescription
FlowPort_aflowPort 
Flange_bflangeFlange of component
SupportsupportSupport/housing of component

Model Modelica.​Thermal.​FluidHeatFlow.​Components.​OneWayValve
Simple one-way valve

Information

Simple one-way valve, comparable to the electrical ideal diode model.

Extends from Modelica.​Thermal.​FluidHeatFlow.​Interfaces.​Partials.​TwoPort (Partial model of two port).

Parameters

TypeNameDefaultDescription
MediummediumModelica.Thermal.FluidHeatFlow.Media.Medium()Medium in the component
Massm Mass of medium
TemperatureT0 Initial temperature of medium
BooleanT0fixedfalseInitial temperature guess value or fixed
final RealtapT1Defines temperature of heatPort between inlet and outlet temperature
VolumeFlowRateV_flowNominal Nominal volume flow rate (forward)
PressuredpForward1e-6Pressure drop at nominal flow (forward)
PressuredpNominal Nominal pressure (backward)
VolumeFlowRateV_flowBackward Leakage volume flow rate (backward)
RealfrictionLoss Part of friction losses fed to medium

Connectors

TypeNameDescription
FlowPort_aflowPort_a 
FlowPort_bflowPort_b