/ANIM/NODA

Engine Keyword Generates animation files containing nodal scalar data.

Format

/ANIM/NODA/Restype

Definitions

Field Contents SI Unit Example
Restype Nodal data type:
DT
Nodal time step
DMAS
Mass variation (see time step control /DT/Eltyp/Iflag). 1
DINER
Output of added inertia per nodes. 2
NDMAS
Non-diagonal mass variation (see time step control /DT/AMS). 3
DAMA2
Damage for TYPE2 interface. 4
DENS
Nodal density. 6
P
Nodal pressure. 6
TEMP
Nodal temperature. 5 6
SSP
Nodal sound speed.
This output is only available for FVMBAG1.
VFRAC
Nodal volumetric fraction, used with LAW37 and LAW51.

1. $\text{DMAS}=\frac{\text{DM}}{{\text{M}}_{0}}$ with $DM=M-{M}_{0}$ .
Where,
${M}_{0}$
Nodal mass at the beginning of the restart
$M$
Current mass
2. $DM$ is re-set to 0 at the beginning of each restart file.(1)
$DINER=\left(\frac{Inertia\left(t\right)-{l}_{0}}{{l}_{0}}\right)$
Where,
${l}_{0}$
Nodal inertia at the beginning of the current run
$Inertia\left(t\right)$
Current inertia
3. In case /DT/AMS is used, a non-diagonal mass matrix is used, which allows to increase the time step on each line of the mass matrix, the lumped mass M ${M}_{0}$ is increased with some value $\text{Δ}M$ which is compensated with non-diagonal terms, in order for the total mass to remain constant. Then: (2)
$NDMAS=\left(\frac{\text{Δ}M}{{M}_{0}}\right)$
4. DAMA2 damage percentages for /INTER/TYPE2 with rupture (Spotflag = 20, 21, or 22):(3)
$\mathrm{min}\left(100,100\cdot \frac{normal\text{ }\text{\hspace{0.17em}}relative\text{\hspace{0.17em}}displacement}{\mathrm{max}normal\text{\hspace{0.17em}}relative\text{\hspace{0.17em}}displacement}\right)$
(4)
$\mathrm{min}\left(100,100\cdot \frac{\mathrm{tangent}\text{ }\text{\hspace{0.17em}}relative\text{\hspace{0.17em}}displacement}{\mathrm{max}\text{\hspace{0.17em}}tangent\text{\hspace{0.17em}}relative\text{\hspace{0.17em}}displacement}\right)$
5. /ANIM/NODA/TEMP is used generally to output nodal temperature for finite element formulation of thermal exchange.
6. These options are also available for 3D ALE and FVM airbag problems. The material density, pressure, and temperature is extrapolated to the element nodes, in this case. For FVM airbags the values are extrapolated only to nodes of external and internal airbag surfaces.