/EOS/LSZK
Block Format Keyword Describes the LandauStanyukovichZeldovichKompaneets EOS for detonation products.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/EOS/LSZK/mat_ID/unit_ID  
eos_title  
$\gamma $  P_{0}  P_{sh}  A  b  
${\rho}_{0}$ 
Definitions
Field  Contents  SI Unit Example 

mat_ID  Material identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

eos_title  EOS title. (Character, maximum 100 characters) 

$\gamma $  Heat capacity ratio
$\gamma =\frac{{C}_{p}}{{C}_{v}}$
. (Real) 

P_{0}  Initial pressure. (Real) 
$\left[\text{Pa}\right]$ 
P_{sh}  Pressure shift. (Real) 
$\left[\text{Pa}\right]$ 
A  EOS parameter. (Real) 
$\left[\text{Pa}\right]$ 
b  EOS parameter. (Real) 

${\rho}_{0}$  Reference density. Default = material density (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
Example (Gas)
#12345678910
/UNIT/1
unit for mat
g mm ms
#12345678910
/MAT/HYDPLA/7/1
IDEALGAS
# RHO_I RHO_0
1.22e3 1.22e3
# E nu
0 0
# a b n eps_max sigma_max
1E30 0 0 0 0
# Pmin
0
/EOS/LSZK/7/1
artificial EOS
# GAMMA P0 PSH A B
2.71 1.00 0 0.05 2.5
# RHO0
1.22e3
/ALE/MAT/7
#12345678910
#enddata
Comments
 The
LandauStanyukovichZeldovichKompaneets EOS ^{1} for detonation products is:
(1) $$P(\rho ,e)=(\gamma 1)\rho e+a{\rho}^{b}$$Where, $\rho $
 Density
 e
 Internal energy density by mass
 b
 Material parameters
(2) $$\mu =\frac{\rho}{{\rho}_{0}}1=\frac{{V}_{0}}{V}1$$This leads to:(3) $$\mathrm{P}\left(\mu ,E\right)=\left(\gamma 1\right)\left(1+\mu \right)E+A{\left(1+\mu \right)}^{b}$$Which is the form used by Radioss where,(4) $$A=a{\rho}_{0}{}^{b}$$Where, E
 Internal energy by initial volume
 A and b
 Material parameters
 Equations of state are used by
Radioss to compute the hydrodynamic pressure and are
compatible with the material laws:
 /MAT/LAW3 (HYDPLA)
 /MAT/LAW4 (HYD_JCOOK)
 /MAT/LAW6 (HYDRO or HYD_VISC)
 /MAT/LAW10 (DPRAG1)
 /MAT/LAW12 (3D_COMP)
 /MAT/LAW49 (STEINB)
 /MAT/LAW102 (DPRAG2)
 /MAT/LAW103 (HENSELSPITTEL)