Ityp = 1

Block Format Keyword This law enables to model a liquid inlet condition by providing data from stagnation point. Liquid behavior is modeled with linear EOS.


law11_ityp0
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID
mat_title
ρistagnation ρ0stagnation            
Ityp   Psh FscaleT        
Ityp = 1 - Liquid Inlet (from stagnation point data)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
node_IDV   C1     Cd    
fct _ ID ρ                  
fct_IDp   P 0 stagnation            
fct_IDE   E 0 stagnation            
Blank Format
Blank Format
fct_IDT fct_IDQ                

Definitions

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
mat_title Material title.

(Character, maximum 100 characters)

 
ρ i stagnation Initial stagnation density. 3

(Real)

[ kg m 3 ]
ρ 0 stagnation Reference density used in E.O.S (equation of state).

Default ρ 0 stagnation = ρ i stagnation (Real)

[ kg m 3 ]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

 
Psh Pressure shift. 2

(Real)

[ Pa ]
FscaleT Time scale factor. 3

(Real)

[ s ]
node_IDV Node identifier for velocity computation. 4
= 0
v in = min nod e ε face v n o d e n
> 0
v in = v node _ ID

(Integer)

 
C1 Liquid bulk modulus. 9

(Real)

 
Cd Discharge coefficient. 5

Default = 0.0 (Real)

 
fct_ID ρ Function f ρ ( t ) identifier for stagnation density. 3
= 0
ρ stagnation ( t ) = ρ i stagnation
> 0
ρ stagnation ( t ) = ρ i stagnation f ρ ( t )

(Integer)

 
fct_IDp Function f P ( t ) identifier for stagnation pressure. 3
= 0
P stagnation ( t ) = P 0 stagnation
> 0
P stagnation ( t ) = P 0 stagnation f P ( t )

(Integer)

 
P 0 stagnation Initial stagnation pressure. 3

(Real)

[ Pa ]
fct_IDE Function f E ( t ) identifier for stagnation density. 3
= 0
E stagnation ( t ) = E 0 stagnation
> 0
E stagnation ( t ) = E 0 stagnation f E ( t )

(Integer)

 
E 0 stagnation Initial specific volume energy at stagnation point. 3 8

(Real)

[ Pa ]
fct_IDT Function f T ( t ) identifier for inlet temperature. 3 6
= 0
T = T adjacent
= n
T = T 0 f T ( t )

(Integer)

 
fct_IDQ Function f Q ( t ) identifier for inlet heat flux. 3 6
= 0
No imposed flux
= n
Q = f Q ( t )

(Integer)

 

Comments

  1. Provided gas state from stagnation point ( ρ stagnation , P stagnation ) is used to compute inlet gas state. Bernoulli is then applied.
    (1)
    P stagnation = P in + ρ in v in 2 2
    This leads to inlet state:(2)
    ρ in = C 1 ρ stagnation C 1 + ρ stagnation v in 2 2 ( 1 + C d ) P in = P stagnation ρ stagnation v in 2 2 ( 1 + C d ) ( ρ e ) in = ( 1 ρ in ρ stagnation ) P in + E stagnation
  2. The Psh parameter enables shifting the output pressure, which also becomes P-Psh. If using Psh=P(t=0), the output pressure will be Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc faaaa@37E5@ , with an initial value of 0.0.
  3. If no function is defined, then related quantity ( P stagnation , ρ stagnation , T , or Q ) remains constant and set to its initial value. However, all input quantities ( P stagnation , ρ stagnation , T , and Q ) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t).
  4. Inlet velocity v in is used in Bernoulli theory.
  5. Discharge coefficient accounts for entry loss and depends on shape orifice.

    mat_bound_sharpedge
    Figure 2.
  6. With thermal modeling, all thermal data ( T 0 , ρ 0 C P , ...) can be defined with /HEAT/MAT.
  7. It is not possible to use this boundary material law with multi-material ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).
  8. Definition of stagnation energy is optional. Default value recommended: E 0 stagnation = 0.0 ; since linear EOS Δ P = C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iuaiabg2da9iaadoeadaWgaaWcbaGaaGymaaqabaGccqaH8oqBaaa@3CA7@ does not depends on energy pressure is not affected and the initial energy is also set by you.

    Specific volume energy E is defined as E = E int V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8D@ , where E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@39C6@ is the internal energy. It can be output using /TH/BRIC.

    Specific mass energy e is defined as e = E int m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamyBaaaaaaa@3CC4@ . This leads to ρ e = E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.

  9. Liquid bulk modulus is usually set to C 1 = ρ 0 c 0 2 , where c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaaaaa@37C5@ is sound speed.