arsm
Find the constrained minimum of a real function.
Syntax
x = arsm(@func,x0)
x = arsm(@func,x0,A,b)
x = arsm(@func,x0,A,b,Aeq,beq)
x = arsm(@func,x0,A,b,Aeq,beq,lb,ub)
x = arsm(@func,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = arsm(@func,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval,info,output] = arsm(...)
Inputs
- func
- The function to minimize.
- x0
- An estimate of the location of the minimum.
- A
- A matrix used to compute
A*x
for inequality contraints. - b
- The upper bound of the inequality constraints
A*x<=b
. - Aeq
- A matrix used to compute
Aeq*x
for equality contraints. - beq
- The upper bound of the equality constraints
Aeq*x=beq
. - lb
- The design variable lower bounds.
- ub
- The design variable upper bounds.
- nonlcon
- The non-linear constraints function.
- options
- A struct containing options settings.
Outputs
- x
- The location of the function minimum.
- fval
- The minimum of the function.
- info
- The convergence status flag.
- output
- A struct containing iteration details. The members are as follows.
- iterations
- The number of iterations.
- xiter
- The candidate solution at each iteration.
- fvaliter
- The objective function value at each iteration.
- coniter
- The constraint values at each iteration. The columns will contain the constraint
function values in the following order:
- linear inequality contraints
- linear equality constraints
- nonlinear inequality contraints
- nonlinear equality constraints
Examples
Minimize the function ObjFunc, subject to the linear inequality
constraint: x1 + 4*x2 > 27
.
-x1 - 4*x2 <
-27
.function obj = ObjFunc(x)
obj = 2*(x(1)-3)^2 - 5*(x(1)-3)*(x(2)-2) + 4*(x(2)-2)^2 + 6;
end
init = [8, 6]; % initial estimate
A = [-1, -4]; % inequality contraint matrix
b = [-27]; % inequality contraint bound
lb = [-10, -10]; % lower variable bounds
ub = [10, 10]; % upper variable bounds
[x,fval] = arsm(@ObjFunc,init,A,b,[],[],lb,ub)
x = [Matrix] 1 x 2
7.00001 5.00000
fval = 14
function obj = ObjFunc(x,offset)
obj = 2*(x(1)-3)^2 - 5*(x(1)-3)*(x(2)-2) + 4*(x(2)-2)^2 + offset;
end
handle = @(x) ObjFunc(x,7);
[x,fval] = arsm(handle,init,A,b,[],[],lb,ub)
x = [Matrix] 1 x 2
7.00001 5.00000
fval = 15
Comments
arsm uses an Adaptive Response Surface Method.
See the fmincon optimization tutorial, Activate-4030: Optimization Algorithms in OML, for an example with nonlinear constraints.
- MaxIter: 25
- MaxFail: 20000
- TolX: 0.001
- TolCon: 0.5 (%)
- TolFunAbs: 0.001
- TolFunRel: 1.0 (%)
- ConRet: 50.0 (%)
- MoveLim: 0.15
- PertM: 'initial'
- PertV: 1.1
- Display: 'off'
Unbounded limits design variable limits are not fully supported and are set to -1000 and 1000. Use of large limits is discouraged due to the size of the search area.
To pass additional parameters to a function argument, use an anonymous function.