/FUNCT_SMOOTH

Block Format Keyword Defines a smoothstep analytic function to be used with loads.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FUNCT_SMOOTH/fct_ID
fct_title
Ascalex Fscaley Ashiftx Fshifty    
X1 Y1        
X2 Y2        
etc. etc.        
XN YN        

Definition

Field Contents SI Unit Example
fct_ID Function identifier.

(Integer, maximum 10 digits)

 
fct_title Function title.

(Character, maximum 100 characters)

 
Ascalex Abscissa scale factor.

Default = 1.0 (Real)

 
Fscaley Ordinate scale factor.

Default = 1.0 (Real)

 
Ashiftx Abscissa shift value.

Default = 0.0 (Real)

 
Fshifty Ordinate shift value.

Default = 0.0 (Real)

 
X1 First abscissa for the function definition.

Default = 0 (Real)

 
Y1 First ordinate for the function definition.

Default = 0 (Real)

 
X2 Second abscissa for the function definition.

(Real)

 
Y2 Second ordinate for the function definition.

(Real)

 
XN (Optional) Nth abscissa point.  
YN (Optional) Nth ordinate point.  

Example

Comments

  1. Points 1 and 2 are required.
  2. A function and a table cannot share the same identifier.
  3. This function can be used with these options:

    /IMPDISP, /IMPVEL, /IMPACC, /IMPDISP/FGEO, /IMPVEL/FGEO, /IMPVEL/LAGMUL, /PLOAD, /CLOAD, /GRAV, /IMPTEMP, and /IMPFLUX

  4. For an abscissa smaller than X1, the ordinate value is Y1.
  5. For an abscissa larger than XN, the ordinate value is YN.
  6. The function is scaled first and shifted afterwards, as:(1)
    Xnew=XoldAscalex+Ashiftx MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBaaaleaacaWGUbGaamyzaiaadEhaaeqaaOGaeyypa0JaamiwamaaBaaaleaacaWGVbGaamiBaiaadsgaaeqaaOGaeyyXICTaamyqaiaadohacaWGJbGaamyyaiaadYgacaWGLbWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamyqaiaadohacaWGObGaamyAaiaadAgacaWG0bWaaSbaaSqaaiaadIhaaeqaaaaa@4F36@
    (2)
    Ynew=YoldFscaley+Fshifty MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBaaaleaacaWGUbGaamyzaiaadEhaaeqaaOGaeyypa0JaamywamaaBaaaleaacaWGVbGaamiBaiaadsgaaeqaaOGaeyyXICTaamOraiaadohacaWGJbGaamyyaiaadYgacaWGLbWaaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOraiaadohacaWGObGaamyAaiaadAgacaWG0bWaaSbaaSqaaiaadMhaaeqaaaaa@4F44@

    Where, Xold MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBaaaleaacaWGVbGaamiBaiaadsgaaeqaaaaa@39CF@ and Yold MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBaaaleaacaWGVbGaamiBaiaadsgaaeqaaaaa@39CF@ are values from the function.

  7. The ordinate is calculated for each time step which results in a smooth function.
  8. The function is calculated for using two consecutive input data points i MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E4@ and i+1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgUcaRiaaigdaaaa@3881@ as:

    If xX1 then y=Y1If X1<x<XN then y=yi+(yi+1yi)d3(1015d+6d2)where, d=xxixi+1xiIf xXN then y=YN MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGjbGaaeOzaiaabccacaWG4bGaeyizImQaamiwamaaBaaaleaacaaIXaaabeaakiaabccacaqG0bGaaeiAaiaabwgacaqGUbGaaeiiaiaadMhacqGH9aqpcaWGzbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaeysaiaabAgacaqGGaGaaeiwamaaBaaaleaacaaIXaaabeaakiabgYda8iaadIhacqGH8aapcaWGybWaaSbaaSqaaiaad6eaaeqaaOGaaeiiaiaabshacaqGObGaaeyzaiaab6gacaqGGaGaamyEaiabg2da9iaadMhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaqadaqaaiaadMhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaadsgadaahaaWcbeqaaiaaiodaaaGcdaqadaqaaiaaigdacaaIWaGaeyOeI0IaaGymaiaaiwdacaWGKbGaey4kaSIaaGOnaiaadsgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaqG3bGaaeiAaiaabwgacaqGYbGaaeyzaiaabYcacaqGGaGaamizaiabg2da9maalaaabaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaakeaacaWG4bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaaaaaGcbaGaaeysaiaabAgacaqGGaGaamiEaiabgwMiZkaadIfadaWgaaWcbaGaamOtaaqabaGccaqGGaGaaeiDaiaabIgacaqGLbGaaeOBaiaabccacaWG5bGaeyypa0JaamywamaaBaaaleaacaWGobaabeaaaaaa@8F78@