lyap
Solves continuous Lyapunov or Sylvester equations.
Syntax
X = lyap(A, B) % Lyapunov Equation
X = lyap(A, B, C) % Sylvester Equation
X = lyap(A, B, [], E) % Generalized Lyapunov Equation
Inputs
- A
 - Real square matrix.
 - B
 - Real matrix.
 - C
 - Real matrix.
 - E
 - Real matrix.
 
Outputs
- X
 - Returns the solution to the continuous Lyapunov Equation. X is a real matrix.
 
Examples
A = [10  2;
    -3 -40];
B = [3  10;
     10  1];
X1 = lyap(A, B)X1 = [Matrix] 2 x 2
-0.22090   0.35448
 0.35448  -0.01409
A = [5];
B = [40 3;
     4 30];
C = [2 1];
X2 = lyap(A, B, C)X2 = [Matrix] 1 x 2
-0.04223  -0.02495
A = [30  1  1;
     1  30  0;
     1  0  20];
E = [1  3  10;
     3  20  0;
     0  1  1];
B = [6.40   73.0   28.0;
     73.0   7.0   25.0;
     28.0   25.0   1.8];
X3 = lyap (A, B, [], E)X3 = [Matrix] 3 x 3
 4.24365  -0.72106  -0.21641
-0.72106   0.10514  -0.02917
-0.21641  -0.02917   0.03104Comments
X = lyap(A, B) solves the continuous Lyapunov equation AX + XA' = -B.
X = lyap(A, B, C) solves the Sylvester equation AX + XB = -C.
X = lyap(A, B, [], E) solves the generalized continuous Lyapunov equation AXE' + EXA' = - B.
Based on the SLICOT library functions SB03MD, SB04MD, and SG03AD.