Rayleigh Damping (/DAMP)

In this method a proportional damping matrix is defined as:(1)
[ C ] = α [ M ] + β [ K ]

Where, α and β are the pre-defined constants. In modal analysis, the use of a proportional damping matrix allows to reduce the global equilibrium equation to n-uncoupled equations by using an orthogonal transformation.

If the global equilibrium equation is expressed as:(2)
[ M ] { X ¨ } + [ C ] { X ˙ } + [ K ] { X } = { F t }
The transformed uncoupled system of equations can be written as:(3)
[ ϕ ] T [ M ] [ ϕ ] { ξ ¨ } + [ ϕ ] T [ C ] [ ϕ ] { ξ ˙ } + [ ϕ ] T [ K ] [ ϕ ] { ξ } = [ ϕ ] T { F T } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq aHvpGzaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaGcdaWadaqa aiaad2eaaiaawUfacaGLDbaadaWadaqaaiabew9aMbGaay5waiaaw2 faamaacmaabaGafqOVdGNbamaaaiaawUhacaGL9baacqGHRaWkdaWa daqaaiabew9aMbGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakm aadmaabaGaam4qaaGaay5waiaaw2faamaadmaabaGaeqy1dygacaGL BbGaayzxaaWaaiWaaeaacuaH+oaEgaGaaaGaay5Eaiaaw2haaiabgU caRmaadmaabaGaeqy1dygacaGLBbGaayzxaaWaaWbaaSqabeaacaWG ubaaaOWaamWaaeaacaWGlbaacaGLBbGaayzxaaWaamWaaeaacqaHvp GzaiaawUfacaGLDbaadaGadaqaaiabe67a4bGaay5Eaiaaw2haaiab g2da9maadmaabaGaeqy1dygacaGLBbGaayzxaaWaaWbaaSqabeaaca WGubaaaOWaaiWaaeaacaWGgbWaaSbaaSqaaiaadsfaaeqaaaGccaGL 7bGaayzFaaaaaa@6F51@
With (4)
[ φ ] T [ C ] [ φ ] = [ α + β ω 1 2 0 . . 0 0 α + β ω 2 2 . . 0 . . . . . . . . . . 0 . . . α + β ω n 2 ]
Each uncoupled equation is written as:(5)
ξ ¨ i + 2 ω i ζ i ξ ˙ i + ω i 2 ξ i = f i t
With (6)
2 ζ i ω i = α + β ω i 2
Where,
ω i
The ith natural frequency of the system
ζ i
The ith damping ratio
This leads to a system of n equations with two unknown variables α and β . Regarding to the range of the dominant frequencies of system, two frequencies are chosen. Using the pair of the most significant frequencies, two equations with two unknown variables can be resolved to obtain values for α and β . For high frequencies the role of β is more significant. However, for lower frequencies α plays an important role (図 1).


図 1. Rayleigh Damping Variation for Natural Frequencies
The Rayleigh damping method applied to explicit time-integration method leads to the following equations:(7)
M γ t + C v t = F e x t t F int t
With C = α M + β K (8)
F int t = F int t d t + K v t d t 2 d t
(9)
v t = v t d t 2 + γ t d t 2
(10)
M γ 0 t = F e x t t F int t
Neglecting F e x t t F e x t t d t and v t v t d t 2 , in β K v t evaluation you have:(11)
K v t = K v t d t 2 = F int t F int t d t d t M ( γ 0 t γ 0 t d t ) d t
And finally:(12)
γ 0 t = M 1 ( F e x t t F int t )
(13)
γ t = γ 0 α v t d t 2 β d t ( γ 0 t γ 0 t d t ) 1 + α d t 2
(14)
v t + d t 2 = v t d t 2 + γ t d t

The three approaches available in Radioss are Dynamic Relaxation (/DYREL), Energy Discrete Relaxation (/KEREL) and Rayleigh Damping (/DAMP). Refer to Example Guide for application examples.

The loading is applied at a rate sufficiently slow to minimize the dynamic effects. The final solution is obtained by smoothing the curves.

In case of elasto-plastic problems, one must minimize dynamic overshooting because of the irreversibility of the plastic flow.