Introduction of background knowledge regarding flow physics and CFD as well as detailed information about the use of AcuSolve and what specific options do.
Collection of AcuSolve simulation cases for which results are compared against analytical or experimental results to demonstrate the accuracy
of AcuSolve results.
In this application, AcuSolve is used to simulate the flow of air between concentric cylinders that is initiated by the rotation of the solid
inner cylinder. The outer cylinder is held stationary while the inner cylinder rotates with a constant speed. AcuSolve results are compared with analytical results as described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to maintain a continuous velocity across a non-conformal guide surface interface.
In this application, AcuSolve is used to simulate the viscous flow of water between a moving and a stationary plate with an imposed pressure
gradient. AcuSolve results are compared with analytical results described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with imposed pressure gradients.
In this application, AcuSolve is used to simulate the flow of air in an enclosed cylindrical cavity with a rotating top and a fixed bottom.
AcuSolve results are compared with experimental data adapted from Michelsen (1986). The close agreement of AcuSolve results with experimental data validates the ability of AcuSolve to model cases containing enclosed cavities with flow induced by rotating walls.
In this application, AcuSolve is used to simulate laminar flow through a channel with two outlets forming a T-junction. AcuSolve results are compared with experimental results adapted from Hayes and others (1989). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with multiple outlet paths.
In this application, AcuSolve is used to simulate the flow of carbon dioxide (CO2) entering a pipe with a fixed velocity. AcuSolve results are compared with analytical results using the Hagen-Poiseuille approach as described in White (1991). The
close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with constant flow velocity.
In this application, AcuSolve is used to simulate two dimensional, laminar flow over a cylinder to predict separation of flow from the cylinder
surface and the flow in the wake area. AcuSolve results are compared with experimental results as described in Tritton (1959). The close agreement of
AcuSolve results with experimental results validates the ability of AcuSolve to model cases with unsteady oscillating vortex streets.
In this application, AcuSolve is used to simulate the separation of laminar flow over a blunt plate. AcuSolve results are compared with experimental results as described in J.C. Lane and R.I. Loehrke (1980). The close
agreement of AcuSolve results with the experimental results validates the ability of AcuSolve to model cases with external laminar flow including separation.
In this application, AcuSolve is used to simulate natural convection in the annular space between a heated inner pipe and an outer concentric pipe.
AcuSolve results are compared with experimental results adapted from Kuehn and Goldstein (1978). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with flow induced by natural convection.
In this application, AcuSolve is used to simulate the flow of water between concentric cylinders. The outer cylinder is held stationary while the
inner cylinder rotates with a constant speed. AcuSolve results are compared with analytical results as described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases containing thin annular gaps with flow induced by rotating walls.
In this application, AcuSolve is used to simulate the heat transfer due to radiation between concentric cylinders. The inner and outer cylinders
are held at constant temperature and are defined to be radiation surfaces. AcuSolve results are compared with analytical results for temperature as described in Incropera (2006). The close agreement
of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with radiation heat transfer requiring view factor computation.
This section includes validation cases that consider unbounded simulation domains where external flow is present over
solid bodies, leading to free boundary layer development.
This section includes validation cases containing conditions producing laminar to turbulent flow that are simulated
with a turbulence transition model.
This section includes validation cases that consider time dependent motion within the domain, requiring that the mesh
movement be modeled with a differential equation, a fully defined mesh motion or by interpolated mesh motion.
Collection of AcuSolve simulation cases for which results are compared against analytical or experimental results to demonstrate the accuracy
of AcuSolve results.
This section includes validation cases that do not require a turbulence model to be
used.
Circumferential Flow in a Cylinder Induced by a Rotating Solid
In this application, AcuSolve is used to simulate the flow of air between concentric cylinders that is initiated by the rotation of the solid inner cylinder. The outer cylinder is held stationary while the inner cylinder rotates with a constant speed. AcuSolve results are compared with analytical results as described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to maintain a continuous velocity across a non-conformal guide surface interface.
Laminar Couette Flow with Imposed Pressure Gradient
In this application, AcuSolve is used to simulate the viscous flow of water between a moving and a stationary plate with an imposed pressure gradient. AcuSolve results are compared with analytical results described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with imposed pressure gradients.
Flow Inside a Rotating Cavity
In this application, AcuSolve is used to simulate the flow of air in an enclosed cylindrical cavity with a rotating top and a fixed bottom. AcuSolve results are compared with experimental data adapted from Michelsen (1986). The close agreement of AcuSolve results with experimental data validates the ability of AcuSolve to model cases containing enclosed cavities with flow induced by rotating walls.
Laminar Flow Past a 90° T-Junction
In this application, AcuSolve is used to simulate laminar flow through a channel with two outlets forming a T-junction. AcuSolve results are compared with experimental results adapted from Hayes and others (1989). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with multiple outlet paths.
Laminar Poiseuille Flow Through a Pipe
In this application, AcuSolve is used to simulate the flow of carbon dioxide (CO2) entering a pipe with a fixed velocity. AcuSolve results are compared with analytical results using the Hagen-Poiseuille approach as described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with constant flow velocity.
Oscillating Laminar Flow Around a Circular Cylinder
In this application, AcuSolve is used to simulate two dimensional, laminar flow over a cylinder to predict separation of flow from the cylinder surface and the flow in the wake area. AcuSolve results are compared with experimental results as described in Tritton (1959). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with unsteady oscillating vortex streets.
Separated Laminar Flow Over a Blunt Plate
In this application, AcuSolve is used to simulate the separation of laminar flow over a blunt plate. AcuSolve results are compared with experimental results as described in J.C. Lane and R.I. Loehrke (1980). The close agreement of AcuSolve results with the experimental results validates the ability of AcuSolve to model cases with external laminar flow including separation.
Natural Convection in a Concentric Annulus
In this application, AcuSolve is used to simulate natural convection in the annular space between a heated inner pipe and an outer concentric pipe. AcuSolve results are compared with experimental results adapted from Kuehn and Goldstein (1978). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with flow induced by natural convection.
Flow Between Concentric Cylinders
In this application, AcuSolve is used to simulate the flow of water between concentric cylinders. The outer cylinder is held stationary while the inner cylinder rotates with a constant speed. AcuSolve results are compared with analytical results as described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases containing thin annular gaps with flow induced by rotating walls.
Heat Transfer Between Radiating Concentric Cylinders
In this application, AcuSolve is used to simulate the heat transfer due to radiation between concentric cylinders. The inner and outer cylinders are held at constant temperature and are defined to be radiation surfaces. AcuSolve results are compared with analytical results for temperature as described in Incropera (2006). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with radiation heat transfer requiring view factor computation.