Composite Failure Model
- /FAIL/HASHIN
- /FAIL/PUCK
- /FAIL/LAD_DAMA
- /FAIL/CHANG
A composite material consists of two different materials (matrix and reinforcement fiber). Each material has a different failure behavior. In Radioss it is possible to use different failure models for matrix and fiber in one composite element (for elements with property TYPE11, TYPE16, TYPE17, TYPE51, PCOMPP or TYPE22). For example, you may use /FAIL/HASHIN for fiber failure, /FAIL/PUCK for matrix failure and /FAIL/LAD_DAMA for delamination between layers or plies (if there is more than one layer or plies defined for the composite).
Besides the above typical composite failure models, /FAIL/FLD (used for isotropic brittle composite materials in layers(plies) as in, glass), /FAIL/ENERGY, /FAIL/TBUTCHER and /FAIL/TENSSTRAIN may also be used to describe failure for composite layers(plies).
/FAIL/HASHIN
- Fiber mode: composite fails, due to fiber rupture in tension or fiber buckling in compression. So, in /FAIL/HASHIN, tensile/shear fiber mode, compression fiber mode and crush mode are the fiber modes. If direction 1 is the fiber direction, then plane 23 is the predominant failure plane for fiber mode.
- Matrix mode: composite fails, due to matrix cracking from the fiber. Failure matrix mode (or shear failure matrix mode) and delamination mode are both matrix modes. The failure plane for matrix mode is parallel to the fiber, and stress σ11σ11 will not be considered in this mode.

Uni-directional Lamina Model | Fabric Lamina Model | |
---|---|---|
Damage criteria | If DD=1, then failure. If 0≤D<10≤D<1, DD then no failure. With D=Max(F1,F2,F3,F4)D=Max(F1,F2,F3,F4) |
If DD=1, then failure. If 0≤D<10≤D<1, DD then no failure. With D=Max(F1,F2,F3,F4)D=Max(F1,F2,F3,F4) |
Tensile/shear fiber mode | F1=(〈σ11〉σt1)2+(σ212+σ213σf122)F1=(⟨σ11⟩σt1)2+(σ212+σ213σf122) | F1=(〈σ11〉σt1)2+(σ212+σ213σfa2)F1=(⟨σ11⟩σt1)2+(σ212+σ213σfa2) F2=(〈σ22〉σt2)2+(σ212+σ223σfb2)F2=(⟨σ22⟩σt2)2+(σ212+σ223σfb2) With, σfa=σf12 , σfb=σf12σt2σt1σfa=σf12,σfb=σf12σt2σt1 |
Compression fiber mode | F2=(〈σa〉σc1)2 F2=(⟨σa⟩σc1)2 With σa=−σ11+〈−σ22+σ332〉σa=−σ11+⟨−σ22+σ332⟩ |
F3=(〈σa〉σc1)2F3=(⟨σa⟩σc1)2 With σa=−σ11+〈−σ33〉σa=−σ11+⟨−σ33⟩ F4=(〈σb〉σc2)2F4=(⟨σb⟩σc2)2 With σb=−σ22+〈−σ33〉σb=−σ22+⟨−σ33⟩ |
Crush mode | F3=(〈p〉σc)2F3=(⟨p⟩σc)2 With p=−σ11+σ22+σ333p=−σ11+σ22+σ333 |
F5=(〈p〉σc)2F5=(⟨p⟩σc)2 With p=−σ11+σ22+σ333p=−σ11+σ22+σ333 |
Shear failure matrix mode | F6=(σ12σm12)2F6=(σ12σm12)2 | |
Failure matrix mode | F4=(〈σ22〉σt2)2+(σ23S23)2+(σ12S12)2F4=(⟨σ22⟩σt2)2+(σ23S23)2+(σ12S12)2 Where, S12=σm12+〈−σ22〉tanϕS23=σm23+〈−σ22〉tanϕS12=σm12+⟨−σ22⟩tanϕS23=σm23+⟨−σ22⟩tanϕ |
|
Delamination mode | F5=S2del[(〈σ33〉σt3)2+(σ23˜S23)2+(σ13S13)2]F5=S2del⎡⎣(⟨σ33⟩σt3)2+(σ23˜S23)2+(σ13S13)2⎤⎦ Where, S13=σm13+〈−σ33〉tanϕ˜S23=σm23+〈−σ33〉tanϕS13=σm13+⟨−σ33⟩tanϕ˜S23=σm23+⟨−σ33⟩tanϕ |
F7=S2del[(〈σ33〉σt3)2+(σ23S23)2+(σ13S13)2]F7=S2del⎡⎣(⟨σ33⟩σt3)2+(σ23S23)2+(σ13S13)2⎤⎦ Where, S13=σm13+〈−σ33〉tanϕ˜S23=σm23+〈−σ33〉tanϕS13=σm13+⟨−σ33⟩tanϕ˜S23=σm23+⟨−σ33⟩tanϕ |
In /FAIL/HASHIN, material strength σt1,σt2,σt3,σc1,σc2σt1,σt2,σt3,σc1,σc2 are derived from tension/compression test for composite.
Crush strength σcσc and fiber shear strength σf12σf12 may be obtained from a quasi-static punch shear test (QS-PST). 6 Crush strength σcσc from the span to punch ratio (SPR) =0 and fiber shear strength σf12σf12 from SPR=1.1.
ϕϕ is the Coulomb friction angle. It is observed that composite shear strength is higher if the composite is also under compression (rather than under tension). This is due to the friction between matrix and fiber.


σm12,σm13,σm23σm12,σm13,σm23 may be derived from a matrix shear test in three directions.
SdelSdel is the scale factor for delamination criteria. It may be fitted with composite delamination experimental datain order for delamination failure to correlate with the damage area in experiment.
/FAIL/PUCK
- Fiber fracture: composite fails, due to the fiber reaching the tensile or compression strength limit.
- Inter fiber failure (IFF): composite fails, due to the fiber matrix cracking.
Damage criteria | If DD=1, then failure. If 0≤D<10≤D<1 DD, then no failure. With D=Max(ef(tensile),ef(compression),ef(ModeA),ef(ModeB),ef(ModeC))D=Max(ef(tensile),ef(compression),ef(ModeA),ef(ModeB),ef(ModeC)) |
Fiber fraction failure | Tensile fiber failure mode: σ11>0σ11>0
ef(tensile)=σ11σt1ef(tensile)=σ11σt1 |
Compressive fiber failure mode: σ11<0σ11<0 ef(compression)=|σ11|σc1ef(compression)=|σ11|σc1 |
|
Inter fiber failure (IFF) 2 | Mode A, if σ22>0σ22>0:![]() ef(ModeA)=1ˉσ12[√(ˉσ12σt2−p+12)2σ222+σ122+p+12σ22]ef(ModeA)=1¯σ12⎡⎢⎣ ⎷(¯σ12σt2−p+12)2σ222+σ122+p+12σ22⎤⎥⎦ |
Mode C, if σ22<0σ22<0:![]() ef(ModeC)=[(σ122(1+p−22)ˉσ12)2+(σ22σc2)2](σc2−σ22)ef(ModeC)=⎡⎣(σ122(1+p−22)¯σ12)2+(σ22σc2)2⎤⎦(σc2−σ22) |
|
Mode B: ![]() ef(ModeB)=1ˉσ12(√σ212+(p−12σ22)2+p−12σ22)ef(ModeB)=1¯σ12(√σ212+(p−12σ22)2+p−12σ22) |
In inter fiber failure, Mode A shows failure under tension in transverse fiber direction (90 degrees to fiber direction), and in this case, shear loading could reduce the failure limit.
If under compression in transverse fiber direction, at first increasing compression will increase composite shear loading (Mode B). If compression continues to increase, then shear loading will decrease (Mode C).
Input Parameters
For fiber fracture failure, you could obtain fiber strengths σt1,σc1σt1,σc1 from tension and compression composite tests in the fiber direction.
For inter fiber failure, you could obtain strengths σt2,σc2σt2,σc2 from tension and compression composite tests in the transverse fiber direction.
You could obtain shear strength ˉσ12¯σ12 with a pure shear test (σ2=σ1=0σ2=σ1=0).
With σt2,σc2,ˉσ12σt2,σc2,¯σ12, then p−22p−22 and p−12p−12 for Mode C and Mode B may be determined.
With σt2,ˉσ12σt2,¯σ12 and additional tension-shear tests in the transverse fiber direction, p+12p+12 may be determined. The additional tension-shear test in transverse fiber direction could take equal tension-shear (by σ22=σ12σ22=σ12) loading.

For p+12,p−12,p−22p+12,p−12,p−22 parameters 3. For carbon fiber composite, use p+12=0.35,p−12=0.3,p−22=0.2p+12=0.35,p−12=0.3,p−22=0.2 and for glass fiber composite, use p+12=0.3,p−12=0.25,p−22=0.2p+12=0.3,p−12=0.25,p−22=0.2.
/FAIL/LAD_DAMA



- tt
- Thickness of the virtual interface. It may be assumed to be 1/5 layer thickness.
- G13G13, G23G23, E33E33
- From upper or lower layer.
- didi
- (with ii=1,2,3), the damage variable.

After Y0Y0 is reached, the damage variable starts to increase and when it reaches 1, d3=1d3=1 (thermodynamic force Yd3Yd3 at this point then becomes the critical damage YcYc). The composite could be considered as fully delaminated and may be deleted immediately or the stress may be reduced. In Radioss, the option τmaxτmax is used to simulate exponential function stress reduction nd the stress at YcYc is σd(tr)σd(tr) (Stress Decrease in Damage).
- If d≥1d≥1, then take d=1d=1
- If d<1d<1, then dd is function of YY (damage evaluation law):
(4) d=w(Y)=〈√Y−√Y0〉√Yc−√Y0d=w(Y)=⟨√Y−√Y0⟩√Yc−√Y0 Y=Yd3+γ1Yd1+γ2Yd2Y=Yd3+γ1Yd1+γ2Yd2 with Ydi|t=supYdi|τ≤tYdi|t=supYdi|τ≤t
Here, γ1,γ2γ1,γ2 are scale factors to consider two other delamination modes. This may be validated with experiments (DCB and ENF specimen test 5).

- If d=1d=1, then ˙d=const.˙d=const.
- If d<1d<1, then ˙d=ka[1−exp(−a〈w(Y)−d〉)]˙d=ka[1−exp(−a⟨w(Y)−d⟩)]




/FAIL/CHANG
- Fiber mode: composite fails, due to fiber rupture in tension or fiber buckling in compression.
- Matrix mode: composite fails, due to matrix failure under tension or compression.
Damage criteria | If D=1D=1, then failure. If 0≤D<10≤D<1 DD, then no failure. With D=Max(ef2,ec2,em2,ed2)D=Max(ef2,ec2,em2,ed2). |
|
Fiber breakage | Tensile fiber mode σ11>0σ11>0 | ef2=(σ11σt1)2+β(σ12ˉσ12)2ef2=(σ11σt1)2+β(σ12¯σ12)2 |
Compression fiber mode σ11<0σ11<0 | ec2=(σ11σc1)2ec2=(σ11σc1)2 | |
Matrix cracking | Tensile matrix mode σ22>0σ22>0 | em2=(σ22σt2)2+ (σ12ˉσ12)2em2=(σ22σt2)2+(σ12¯σ12)2 |
Compressive matrix mode σ22<0σ22<0 | ed2=(σ222ˉσ12)2+[(σc22ˉσ12)2−1]σ22σc2+(σ12ˉσ12)2ed2=(σ222¯σ12)2+[(σc22¯σ12)2−1]σ22σc2+(σ12¯σ12)2 |
- direction 1
- Fiber direction.
- σt1,σc1σt1,σc1
- Fiber tensile/compressive strength.
- σt2,σc2σt2,σc2
- Matrix strength.
- ˉσ12¯σ12
- Shear strength in composite ply plane.
- ββ
- Shear scale factor, which can be determined experimentally.
Stress Decrease in Damage
- HASHIN:
D=Max(F1,F2,F3,F4)≥1D=Max(F1,F2,F3,F4)≥1
- PUCK:
D=Max(ef(tensile),ef(compression),ef(ModeA),ef(ModeB),ef(ModeC))≥1D=Max(ef(tensile),ef(compression),ef(ModeA),ef(ModeB),ef(ModeC))≥1
- LAD_DAMA:
d≥1d≥1
- CHANG:
D=Max(ef2,ec2,em2,ed2)≥1D=Max(ef2,ec2,em2,ed2)≥1
with, t≥tr

- σd(tr)
- Stress components when damage is reached D≥1.
- tr
- Time of σd(tr).
- τmax
- Time of dynamic relaxation.