# Time Step

## Translational Stiffness Time Step

$\text{Δ}{t}_{translational_stifness}=\frac{\sqrt{mass.\mathrm{max}\left(Kt\right)+{C}_{t}^{2}}-{C}_{t}}{\mathrm{max}\left({K}_{t}\right)}$

Where,
$\mathrm{max}\left(Kt\right)$
Maximum translational stiffness
${C}_{t}$
Translational damping

## Rotational Stiffness Time Step

$\text{Δ}{t}_{rotational_stifness}=\frac{\sqrt{inertia.{K}_{r}^{\text{'}}+C{\text{'}}_{r}^{2}}-C{\text{'}}_{r}^{}}{{K}_{r}^{\text{'}}}$

${K}_{r}^{\text{'}}$ is the equivalent rotational stiffness: ${K}_{r}^{\text{'}}=\mathrm{max}\left({K}_{t}\right).{L}^{2}+\mathrm{max}\left({K}_{r}\right)$

Where,
$\mathrm{max}\left({K}_{t}\right)$
Maximum translational stiffness
$\mathrm{max}\left({K}_{r}\right)$
Maximum rotational stiffness
$C{\text{'}}_{r}^{}$
Equivalent rotational damping: ${C}_{r}^{\text{'}}=\mathrm{max}\left({C}_{t}\right).{L}^{2}+\mathrm{max}\left({C}_{r}\right)$
Where,
$\mathrm{max}\left({C}_{t}\right)$
Maximum translational damping
$\mathrm{max}\left({C}_{r}\right)$
Maximum rotational damping