DVS 1608

Version: September 2011 Edition

List of Classification Parameters

Evaluation Distance
Reference distance to find the evaluation location from the weld element at which the stress values are extracted.
Weld Width
Width of the weld material from the web wall. This parameter is ignored if specifying the evaluation distance is done manually.
Note: Refer to - Find Evaluation Positions.
Grinding Bonus
Parameter to specify if the grinding bonus has to be considered or not.
Effective Weld Thickness
This parameter is used to consider the influence of welds which do not cover the same cross section area as indicated by the shell element in the respective evaluation location. It modifies the stress at the evaluation location based on the ratio to the shell thickness. (a > 0)
A r = T i · T f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk hacqGH9aqpcaWGubWaaSbaaSqaaiaadMgaaeqaaOGaeS4JPFMaamiv amaaBaaaleaacaWGMbaabeaaaaa@3F13@
  • T i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaabaaa aaaaaapeGaamyAaaaa@37DA@ : Thickness influence represents the resultant maximum weld thickness. It varies based on the weld type. this parameter is location specific.
  • T f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamOzaaaa@37D7@ : Indicates which shell thickness you need for the calculation of effective weld thickness ( a ). Valid options are t and tmin, also location specific. t = thickness of welded shell. tmin = min thickness of all connected shells.
Mean Stress Sensitivity – Normal
Mean stress sensitivity factor used for the normal direction evaluation.
Mean Stress Sensitivity – Shear
Mean stress sensitivity factor used for the shear direction evaluation.
Notch Class - Transverse Location_X
Notch class definition considered for the fatigue limit calculation for the normal stress component in the transverse direction (perpendicular to the axis of the weld) at ‘X’.
Notch Class - Longitudinal Location_X:
Notch class definition considered for the fatigue limit calculation for the normal stress component in the longitudinal direction (parallel to the axis of the weld) at ‘X’.
Notch Class - Shear Location_X
Notch class definition considered for the shear stress component at ‘X’.
Note: Where ‘X’ can be any evaluation location.
Material Yield - Location_X
Material yield value used for the static evaluation.

Formulation

Stress Component considered for evaluation
  • σT: Transverse component perpendicular to the axis of the weld
  • σL: Longitudinal component parallel to the axis of the weld
  • τ: Shear Component
Corrected stress calculation
The stress value correction is carried out using the effective weld thickness.
Calculation of the Assessment stress value (numerator in utilization formulae)
σTA (Stress Amplitude) = (σTmax - σTmin) / 2

The stress amplitude is used as the numerator for the utilization calculation.

Fatigue Limit Calculation

The fatigue limit values (σTzul, σLzul, and τzul), are calculated based on the following regimes of Stress Ratio ®,

Reference: the DVS1608 regulation document section 7.2.2.

For nominal stress (longitudinal σLzul and transverse σTzul)

Regime 1: R σ > 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qa cqGH+aGpcaqGGaGaaGymaaWdaiaawIcacaGLPaaaaaa@3D1F@
σ z u l = 54 1.04 x M P a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGynaiaaisdacqGHflY1caaIXaGaaiOlaiaaicdaca aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa peGaamytaiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@4951@
Regime 2:       R σ   0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiabgkHiTiaabccacqGHEisPcaqGGaGaeyizImQaaeii aiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aabeaak8qacqGHKjYOca qGGaGaaGimaaWdaiaawIcacaGLPaaaaaa@43C7@
σ zul =46 1.04 x 1 1+ M σ 1+ R σ 1 R σ MPa MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGinaiaaiAdacqGHflY1caaIXaGaaiOlaiaaicdaca aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb WdamaaBaaaleaapeGaeq4WdmhapaqabaGcpeWaaSaaa8aabaWdbiaa igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeq4Wdmhapaqabaaake aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHdpWCa8aa beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam iuaiaadggaaiaawIcacaGLPaaaaaa@5A39@
Regime 3: 0   <   R σ <   0.5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiaaicdacaqGGaGaeyipaWJaaeiiaiaadkfapaWaaSba aSqaa8qacqaHdpWCa8aabeaak8qacqGH8aapcaqGGaGaaGimaiaac6 cacaaI1aaapaGaayjkaiaawMcaaaaa@418F@
σ zul =42 1.04 x 1 1+ M σ 3 1+ R σ 1 R σ MPa MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGinaiaaikdacqGHflY1caaIXaGaaiOlaiaaicdaca aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkdaWcaa WdaeaapeGaamyta8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWd biaaiodaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaey4kaS IaamOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaaGcbaWdbiaaigda cqGHsislcaWGsbWdamaaBaaaleaapeGaeq4WdmhapaqabaaaaaGcpe GaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaqadaWdaeaapeGaamyt aiaadcfacaWGHbaacaGLOaGaayzkaaaaaa@5CC9@
Regime 4: 0.5     R σ <   1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbiaaicdacaGGUaGaaGynaiaabccacqGHKjYOcaqGGaGa amOua8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaOWdbiabgYda8iaabc cacaaIXaaapaGaayjkaiaawMcaaaaa@4241@
σ zul =36.5 1.04 x MPa MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaG4maiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa a@4AC2@

M τ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@ is the mean stress sensitivity, the exponent x in the above equations is queried from the below notch detail tables:

Curve B B- B+ C C- C+ D D-
x 6 7 8 9 10 11 12 13
Curve E1+ E1 E1- E4+ E4 E4- E5+ E5 E5- E6+ E6 E6-
X 14 15 16 17 18 19 20 21 22 23 24 25
Curve F1+ F1 F2
x 26 27 28

For shear stress, τ z u l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qacaWG6bGaamyDaiaadYgaa8aabeaa aaa@3B1C@ ,

Regime 2: (1   R τ  0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabgkHiTiaaigdacaqGGaGaeyizImQaaeiiaiaadkfapaWa aSbaaSqaa8qacqaHepaDa8aabeaak8qacqGHKjYOcaqGGaGaaGima8 aacaGGPaaaaa@4235@
τ z u l = 28 1.04 x 1 1 + M τ 1 + R τ 1 R τ M P a MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGOmaiaaiIdacqGHflY1caaIXaGaaiOlaiaaicdaca aI0aWdamaaCaaaleqabaWdbiabgkHiTiaadIhaaaGcdaqadaWdaeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHRaWkcaWGnb WdamaaBaaaleaapeGaeqiXdqhapaqabaGcpeWaaSaaa8aabaWdbiaa igdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaake aapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8aa beaaaaaaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGnbGaam iuaiaadggaaiaawIcacaGLPaaaaaa@5A41@
Regime 3: ( 0   <   R τ <   0.5 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa aaaaaapeGaaGimaiaabccacqGH8aapcaqGGaGaamOua8aadaWgaaWc baWdbiabes8a0bWdaeqaaOWdbiabgYda8iaabccacaaIWaGaaiOlai aaiwdapaGaaiykaaaa@4161@
τ zul =26.5 1.04 x 1 1+ M τ 3 1+ R τ 1 R τ MPa MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGOmaiaaiAdacaGGUaGaaGynaiabgwSixlaaigdaca GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa kmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai abgUcaRmaalaaapaqaa8qacaWGnbWdamaaBaaaleaapeGaeqiXdqha paqabaaakeaapeGaaG4maaaadaqadaWdaeaapeWaaSaaa8aabaWdbi aaigdacqGHRaWkcaWGsbWdamaaBaaaleaapeGaeqiXdqhapaqabaaa keaapeGaaGymaiabgkHiTiaadkfapaWaaSbaaSqaa8qacqaHepaDa8 aabeaaaaaak8qacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaabmaa paqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaaa@5E44@
Regime 4: ( R τ   0.5 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaabaaa aaaaaapeGaamOua8aadaWgaaWcbaWdbiabes8a0bWdaeqaaOWdbiab gwMiZkaabccacaaIWaGaaiOlaiaaiwdapaGaaiykaaaa@3F1F@
τ zul =24.4 1.04 x MPa MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamOEaiaadwhacaWGSbaapaqabaGc peGaeyypa0JaaGOmaiaaisdacaGGUaGaaGinaiabgwSixlaaigdaca GGUaGaaGimaiaaisdapaWaaWbaaSqabeaapeGaeyOeI0IaamiEaaaa kmaabmaapaqaa8qacaWGnbGaamiuaiaadggaaiaawIcacaGLPaaaaa a@4AC0@

M τ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiabes8a0bWdaeqaaaaa@38FA@ is the mean stress sensitivity, the exponent x in the above equations is queried from the below notch detail table:

Curve G H
x 0 9
The grinding bonus and the thickness factor is applied to the calculated fatigue limit for longitudinal and transverse and just the thickness factor to the calculated shear fatigue limit.
Utilization Factor Calculation
UT = σTA / σTzul

UL = σLA / σLzul

Uτ = τA / τzul

Resultant Utilization Calculation
U R = ( U T ) 2 + ( U L ) 2 + ( U τ ) 2 +( U T X U L ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGsbaabeaakiabg2da9maakeaabaGaaiikaiaadwfadaWg aaWcbaGaamivaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaiikaiaadwfadaWgaaWcbaGaamitaaqabaGccaGGPaWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadwfadaWgaaWcbaGaeq iXdqhabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG OaGaamyvamaaBaaaleaacaWGubaabeaakiaadIfacaWGvbWaaSbaaS qaaiaadYeaaeqaaOGaaiykaaWcbaGaaGOmaaaaaaa@4FE0@