SS-V: 5050 Pure Bending of a Plastic Beam

Test No. VNL06Find elastic core and maximum displacements in a cantilever beam loaded with a moment.

Definition



Figure 1.

Beam dimensions are b x h x L.

Where,
Dimension
Value
b
=10 mm
h
=40 mm
L
=200 mm
Material of the beam is rigid plastic with the strain-stress curve (Figure 2).


Figure 2.
The material properties are:
Properties
Value
Yield stress
σ y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHdpWCdaWgaaWcbaGaamyEaaqabaaaaa@3BA4@ = 2.1188e+8 Pa
Yield strain
ε y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH1oqzdaWgaaWcbaGaamyEaaqabaaaaa@3B88@ = 1.73425e-3
Poisson's Ratio
0

The study was performed for the following moment M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGIbaaaa@399E@ values: 776.893 N*m and 847.518 N*m

Reference Solution

Plastic beam bending theory assumes that there are two zones in the beam material: plastic zone at the outer layers of the beam and elastic core at the beam centerline.


Figure 3. Corresponding stress distribution for material without hardening
The relation between applied moment M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGIbaaaa@399E@ and the size H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGIbaaaa@399E@ of the elastic core in the beam.(1)
M =   σ y * b * ( h 2 / 4     H 2 / 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9iaacckacqaHdpWCpaWaaSbaaSqaa8qacaWG5baa paqabaGcpeGaaiOkaiaadkgacaGGQaWdamaabmaabaWdbiaadIgapa WaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaaI0aGaaeiiaiabgkHi TiaabccacaWGibWdamaaCaaaleqabaWdbiaaikdaaaGccaGGVaGaaG 4maaWdaiaawIcacaGLPaaaaaa@4929@

Where, b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGIbaaaa@399E@ is the beam thickness.

Maximum deflection:(2)
U m a x =   ε y * L 2 / ( 2 * H ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaOWd biabg2da9iaabccacqaH1oqzpaWaaSbaaSqaa8qacaWG5baapaqaba GcpeGaaiOkaiaadYeapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+ca paWaaeWaaeaapeGaaGOmaiaacQcacaWGibaapaGaayjkaiaawMcaaa aa@4623@

Results

The theory of bending of plastic beams is based on hypothesis of flat cross-sections which remain flat during deformations. In order to emulate this basic assumption as close as possible the problem was modeled as an assembly of two solids. One solid represented the beam itself with material properties defined by the curve (Figure 2). Another small solid was attached to the beam end and was set as an absolutely rigid body (Figure 4). The rigid solid was loaded with the moment M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGIbaaaa@399E@ and it served as a moment transfer element.


Figure 4.
The following tables summarize the simulation results which are depicted in the figures below.
Moment M [N*m] SOL Reference, Elastic Core Size [mm] SimSolid, Approximate Elastic Core Size [mm] % Difference
776.893 10.0 12.0 20.00%
847.518 5.0 6.0 20.00%
Moment M [N*m] SOL Reference, Maximum Displacement [mm] SimSolid, Maximum Displacement [mm] % Difference
776.893 3.468 3.351 -3.37%
847.518 6.937 6.918 -0.27%
It should be mentioned that SimSolid 3D solution does not have sharp boundary between elastic and plastic zones as it is in simplified beam bending formulations. This makes difficult direct comparison; however, the elastic zone approximate sizes are in good correlation.


Figure 5. Stress X at M=776.893 N*m


Figure 6. Stress X at M=847.518 N*m


Figure 7. von Mises stress at M=776.893 N*m


Figure 8. von Mises stress at M=847.518 N*m


Figure 9. Residual von Mises stress after unloading at M=776.893 N*m


Figure 10. Residual von Mises stress after unloading at M=847.518 N*m
1 Mase, George E.,“Theory and Problems of Continuum Mechanics”, McGraw-Hill Company, New York, 1970