ARYSUB

ModelingCalculates the values for a user-defined input array element.

Use

<Reference_Array
     id                  = "30100100"
     type                = "U"
     num_element         = "6"
     usrsub_param_string = "USER(502,11401020,11701100,339.3,207)"
     usrsub_dll_name     = "NULL"
     usrsub_fnc_name     = "ARYSUB"
  />

Format

Fortran Calling Syntax
SUBROUTINE ARYSUB (ID, TIME, PAR, NPAR, DFLAG, IFLAG, NVALUE, VALUE)
C/C++ Calling Syntax
void STDCALL ARYSUB (int *id, double *time, double *par, int *npar, int *dflag, int *iflag, int *nvalue, double *value)
Python Calling Syntax
def ARYSUB(id, time, par, npar, dflag, iflag, nvalue):
MATLAB Calling Syntax
function value = ARYSUB(id, time, par, npar, dflag, iflag, nvalue)

Attributes

ID
[integer]
The array element identifier.
TIME
[double precision]
The current simulation time.
PAR
[double precision]
An array that contains the constant arguments from the list provided in the user-defined statement.
NPAR
[integer]
The number of entries in the PAR array.
DFLAG
[logical]
A Boolean variable that MotionSolve sets to true when it needs partial derivatives. Otherwise, it is set to false.
IFLAG
[logical]
A Boolean variable that MotionSolve sets to true when it needs to know on which functions CNFSUB depends. When the flag is set to false, then the values of the user-defined expressions are computed.
NVALUES
The number of values the user-defined Reference_Array contains.

Output

VALUES
[double precision]
Output array that contains the values for the user-defined Reference_Array.

Example

This example describes how ARYSUB is used to calculate six state-dependent quantities that obey the following mathematical law:

A = F ( X ) C V B = K t Y C t ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaaceGadmWadeWabiqaceabbiqafeaakq aabeqaaiaadgeacqGH9aqpcqGHsislcaWGgbWaaeWaaeaacaWGybaa caGLOaGaayzkaaGaeyOeI0Iaam4qaiaadAfaaeaacaWGcbGaeyypa0 JaeyOeI0Iaam4samaaBaaaleaacaWG0baabeaakiaadMfacqGHsisl caWGdbWaaSbaaSqaaiaadshaaeqaaOGaeqyYdChaaaa@4B8A@

X is a 3x1 matrix that represents the displacement vector from the origin of a J Marker to the origin of the I Marker as measured in the global coordinate system.

V is a 3x1 matrix that represents the time derivative of {X}.

Y is a 3x1 matrix that represents the small angle rotation of the I Marker with respect to the J Marker.

ω is a 3x1 matrix that represents angular velocity of the I Marker with respect to the J Marker as measured in the ground coordinate system.

C , K T , C T are 3x3 diagonal matrices that are passed in to ARYSUB through the PAR array.

F ( X ) is a 3x1 matrix whose entries are defined as spline functions of the displacement X.

def ARYSUB(id, time, par, npar, dflag, iflag, nvalue)
    # Initialize outputs first 
    errflg =0
    value = 6*[0.0]

    # Get I/J, the spline ids and [K]/[C] matrices from PAR
    Ipar = []
    ipar.append(int(par[1]))
    ipar.append(int(par[2]))

    kx_spl_id=int(par[3])
    ky_spl_id=int(par[4])
    kz_spl_id=int(par[5])

    ktx=par[6]
    kty=par[7]
    ktz=par[8]
    
    cx=par[9]
    cy=par[10]
    cz=par[11]

    ctx=par[12]
    cty=par[13]
    ctz=par[14]

    # Calculate AX(I,J),AY(I,J),AZ(I,J)
    [ax,errflg]=py_sysfnc("ax",ipar)
    [ay,errflg]=py_sysfnc("ay",ipar)
    [az,errflg]=py_sysfnc("az",ipar)

    #CalculateDX(I,J,J),DY(I,J,J),DZ(I,J,J)
    ipar.append(int(par[2]))
    [dx,errflg]=py_sysfnc("dx",ipar)
    [dy,errflg]=py_sysfnc("dy",ipar)
    [dz,errflg]=py_sysfnc("dz",ipar)

    #CalculateWX(I,J,J),WY(I,J,J),WZ(I,J,J)
    [wx,errflg]=py_sysfnc("wx",ipar)
    [wy,errflg]=py_sysfnc("wy",ipar)
    [wz,errflg]=py_sysfnc("wz",ipar)

    #CalculateVX(I,J,J,J),VY(I,J,J,J),VZ(I,J,J,J)
    ipar.append(int(par[2]))
    [vx,errflg]=py_sysfnc("vx",ipar)
    [vy,errflg]=py_sysfnc("vy",ipar)
    [vz,errflg]=py_sysfnc("vz",ipar)

    #Calculate{F(x)}
    [fx,errflg]=py_akispl(-dx,0.0,kx_spl_id,0)
    [fy,errflg]=py_akispl(-dy,0.0,ky_spl_id,0)
    [fz,errflg]=py_akispl(-dz,0.0,kz_spl_id,0)

    #{a}
    value[0]=fx-cx*vx
    value[1]=fy-cy*vy
    value[2]=fz-cz*vz

    #{b}
    value[3]=-ktx*ax-ctx*wx
    value[4]=-kty*ay-cty*wy
    value[5]=-ktz*az-ctz*wz
    return value

Comments

  1. ARYSUB can only be defined for an input array element. For example: Reference_Array with type="U".
  2. The ID of the Reference_Array, defined with ARYSUB, may be referenced as the u_array_id in Control_StateEqn or Force_StateEqn element. For example:
    <Control_StateEqn
         id                  = "301001"
         type                = "USERSUB"
         x_array_id          = "30100200"
         y_array_id          = "30100300"
         u_array_id          = "30100100"
         num_state           = "2"
         num_output          = "1"
         is_static_hold      = "FALSE"
         usrsub_param_string = "USER(998,0,1,-10,.1,10,0,0,1)"
         usrsub_dll_name     = "NULL"
         usrsub_fnc_name     = "GSESUB"
         usrsub_der1_name    = "GSEXX"
         usrsub_der2_name    = "GSEXU"
         usrsub_der3_name    = "GSEYX"
      />
    <Force_StateEqn
         id                  = "301001"
         type                = "USERSUB"
         x_array_id          = "535050504"
         y_array_id          = "535050508"
         u_array_id          = "535050505"
         num_state           = "2"
         num_output          = "6"
         usrsub_param_string = "USER(1001,100.,0.31625,0.0004,1.,5.,5,3,0.5,0.3,0.)"
         usrsub_dll_name     = "ms_csubdll"
         usrsub_fnc_name     = "YFOSUB"
         is_static_hold      = "FALSE"
         i_marker_id         = "30101020"
         j_floating_marker_id= "30102020"
         ref_marker_id       = "30102020"
      />