/FAIL/WILKINS
Block Format Keyword Describes the Wilkins failure model.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/FAIL/WILKINS/mat_ID/unit_ID  
α  $\beta $  ${P}_{\mathrm{lim}}$  ${D}_{f}$  I_{fail_sh}  I_{fail_so} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

fail_ID 
Definitions
Field  Contents  SI Unit Example 

mat_ID  Material
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

α  Hydrostatic pressure
exponent. (Real) 

$\beta $  Deviatoric
coefficient. (Real) 

${P}_{\mathrm{lim}}$  Hydrostatic pressure
limit. (Real) 
$\left[\text{Pa}\right]$ 
${D}_{f}$  Critical
damage. (Real) 

I_{fail_sh}  Shell failure flag.
(Integer) 

I_{fail_so}  Solid failure flag.
(Integer) 

fail_ID  Failure criteria identifier. 2 (Integer, maximum 10 digits) 
Example (Metal)
#RADIOSS STARTER
#12345678910
/UNIT/1
unit for mat
# MUNIT LUNIT TUNIT
Mg mm s
#12345678910
# 1. MATERIALS:
#12345678910
/MAT/PLAS_JOHNS/1/1
Metal
# RHO_I
2.8E9 0
# E Nu
60000 .3
# a b n EPS_p_max SIG_max0
370 190 .4 0 0
# c EPS_DOT_0 ICC Fsmooth F_cut Chard
0 0 0 0 0 0
# m T_melt rhoC_p T_r
0 0 0 0
/FAIL/WILKINS/1/1
# Alpha Beta Plim Df Ifail_sh Ifail_so
1.8 .75 750 0.3 1 0
#12345678910
#enddata
#12345678910
Comments
 The cumulative
damage is:
${D}_{c}={\displaystyle \int {W}_{1}{W}_{2}d{\overline{\epsilon}}_{p}}$
Where,
${W}_{1}={\left(\frac{1}{1+aP}\right)}^{\alpha}$
$a=\frac{1}{{P}_{\mathrm{lim}}}$
Where, P
 Hydro pressure
$P=\frac{1}{3}{\displaystyle \sum _{j=1}^{3}{\sigma}_{j}{}_{j}}$
${W}_{2}={\left(2A\right)}^{\beta}\text{\hspace{0.17em}}$
$A=\mathrm{max}\left(\frac{{s}_{2}}{{s}_{1}},\frac{{s}_{2}}{{s}_{3}}\right),\text{\hspace{0.17em}}{s}_{1}\ge {s}_{2}\ge {s}_{3}$
Where, ${s}_{1},{s}_{2},{s}_{3}$ are the deviatoric stresses.
 The fail_ID is used with /STATE/BRICK/FAIL and /INIBRI/FAIL. There is no default value. If the line is blank, no value will be output for failure model variables in the /INIBRI/FAIL (written in .sta file with /STATE/BRICK/FAIL option).