/FAIL/HASHIN
Block Format Keyword Describes the Hashin failure model. This failure model is available for Shell and Solid.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/FAIL/HASHIN/mat_ID/unit_ID | |||||||||
Iform | Ifail_sh | Ifail_so | ratio | I_Dam | Imod | I_frwave | ˙εmin˙εmin | ||
σt1σt1 | σt2σt2 | σt3σt3 | σc1σc1 | σc2σc2 | |||||
σcσc | σf12σf12 | σm12σm12 | σm23σm23 | σm13σm13 | |||||
ϕϕ | Sdel | τmaxτmax | ˙ε0˙ε0 | Tcut |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Soft |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fail_ID |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
Iform | Formulation flag.
(Integer) |
|
Ifail_sh | Shell failure flag.
(Integer) |
|
Ifail_so | Solid failure flag.
(Integer) |
|
ratio | For
Isolid=2 or
Ifail_sh=2: the
element will be deleted, if more than ratio of the layers (or integration points)
have failed. Default = 1.0 (Real) |
|
I_Dam | Damage calculation flag. 6
(Integer) |
|
Imod | Relaxation time calculation.
(Integer) |
|
I_frwave | Failure propagation flag between neighbor elements.
(Integer) |
|
˙εmin˙εmin | Low strain rate limit. Default = 0.0 (Real) |
[1s][1s] |
σt1σt1 | Longitudinal tensile strength (in fiber direction). Default = 1020 (Real) |
[Pa][Pa] |
σt2σt2 | Transverse tensile strength (perpendicular to the fiber direction). Default = 1020 (Real) |
[Pa][Pa] |
σt3σt3 | Through thickness tensile strength. Default = 1020 (Real) |
[Pa][Pa] |
σc1σc1 | Longitudinal compressive strength (in fiber direction). Default = 1020 (Real) |
[Pa][Pa] |
σc2σc2 | Transverse compressive strength (perpendicular to the fiber direction). Default = 1020 (Real) |
[Pa][Pa] |
σcσc | Crush strength. Default = 1020 (Real) |
[Pa][Pa] |
σf12σf12 | Fiber shear strength. Default = 1020 (Real) |
[Pa][Pa] |
σm12σm12 | Matrix shear strength 12. Default = 1020 (Real) |
[Pa][Pa] |
σm23σm23 | Matrix shear strength 23. Default = 1020 (Real) |
[Pa][Pa] |
σm13σm13 | Matrix shear strength 13. Default = 1020 (Real) |
[Pa][Pa] |
ϕϕ | Coulomb friction Angle for matrix and
delamination < 90 degrees. Default = 0 (Real) |
[deg][deg] |
Sdel | Delamination criteria scale factor. Default = 1.0 (Real) |
|
τmaxτmax | Dynamic time relaxation. 5 Default = 1020 (Real) |
[s][s] |
˙ε0˙ε0 | Reference strain rate. Default = 10-20 (Real) |
[1s][1s] |
Tcut | Strain rate cutoff period. Default = τmaxτmax (Real) |
[s][s] |
Soft | Reduction factor applied to failure criteria when
one of neighbor elements has already
failed. Only used if, I_frwave=2. 0.0. ≤ Soft ≤ 1.0 Default = 0.0 (Real) |
|
fail_ID | (Optional) Failure criteria identifer. 4 (Integer, maximum 10 digits) |
Example (Composite)

#RADIOSS STARTER
/UNIT/1
unit for mat and failure
# MUNIT LUNIT TUNIT
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/COMPSH/1/1
composite material
# RHO_I
1.5E-6
# E11 E22 NU12 Iform E33
42 40 .05 1 .5
# G12 G23 G31 EPS_f1 EPS_f2
3.4 3 3 0 0
# EPS_t1 EPS_m1 EPS_t2 EPS_m2 dmax
0 0 0 0 .9999
# Wpmax Wpref Ioff IFLAWP ratio
0 0 5 0 0
# c EPS_rate_0 alpha ICC_global
0 2E-4 0 1
# sig_1yt b_1t n_1t sig_1maxt c_1t
.1 25 .1 0 0
# EPS_1t1 EPS_2t1 SIGMA_rst1 Wpmax_t1
0 0 0 0
# sig_2yt b_2t n_2t sig_2maxt c_2t
.1 20 .1 0 0
# EPS_1t2 EPS_2t2 sig_rst2 Wpmax_t2
0 0 0 0
# sig_1yc b_1c n_1c sig_1maxc c_1c
.005 800 .5 0 0
# EPS_1c1 EPS_2c1 sig_rsc1 Wpmax_c1
.08 .15 .1 0
# sig_2yc b_2c n_2c sig_2maxc c_2c
.005 2000 .5 0 0
# EPS_1c2 EPS_2c2 sig_rsc2 Wpmax_c2
0 0 0 0
# sig_12yt b_12t n_12t sig_12maxt c_12t
.004 83 .31 0 0
# EPS_1t12 EPS_2t12 sig_rst12 Wpmax_t12
.075 .085 .05 0
# GAMMA_ini GAMMA_max d3max
1E31 1E31 .9999
# Fsmooth Fcut
0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FAIL/HASHIN/1/1
# Iform Ifail_sh Ifail_so Ratio I_Dam Imod Ifrwave EPS_DOT_MIN
2 1 0 0 1
# Sigma1_T Sigma2_T Sigma3_T Sigma1_C Sigma2_C
2 .525 1E30 1.7 1.7
# Sigma_C SigmaF_12 SigmaM_12 SigmaM_23 SigmaM_13
1E30 1E30 .075 1E30 1E30
# Phi Sdelam Tau_max EPS_DOT_0 Tcut
0 1 .01
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- Example of ratio: if ratio=0.5, and Ifail_sh=2 (or Ifail_so=2), the element will be deleted, if more than half of the layers (or integration points) failed.
- The 3D material failure model:
- Uni-directional lamina model:Tensile/shear fiber mode:
(1) F1=(〈σ11〉σt1)2+(σ212+σ213σf122)F1=(⟨σ11⟩σt1)2+(σ212+σ213σf122)Compression fiber mode:(2) F2=(〈σa〉σc1)2 F2=(⟨σa⟩σc1)2with, σa=−σ11+〈−σ22+σ332〉σa=−σ11+⟨−σ22+σ332⟩
Crush mode:(3) F3=(〈p〉σc)2F3=(⟨p⟩σc)2with, p=−σ11+σ22+σ333p=−σ11+σ22+σ333
Failure matrix mode:(4) F4=(〈σ22〉σt2)2+(σ23S23)2+(σ12S12)2F4=(⟨σ22⟩σt2)2+(σ23S23)2+(σ12S12)2Delamination mode:(5) F5=S2del[(〈σ33〉σt2)2+(σ23˜S23)2+(σ13S13)2]F5=S2del⎡⎣(⟨σ33⟩σt2)2+(σ23˜S23)2+(σ13S13)2⎤⎦Where,
S12=σm12+〈−σ22〉tanϕS23=σm23+〈−σ22〉tanϕS13=σm13+〈−σ33〉tanϕ˜S23=σm23+〈−σ33〉tanϕ
Note:(6) 〈a〉={a if a>00 if a<0 - Fabric lamina model:Tensile/shear fiber mode:
(7) F1=(〈σ11〉σt1)2+(σ212+σ213σfa2)(8) F2=(〈σ22〉σt2)2+(σ212+σ223σfb2)With σfa=σf12 , σfb=σf12σt2σt1
Compression fiber mode:(9) F3=(〈σa〉σc1)2with, σa=−σ11+〈−σ33〉(10) F4=(〈σb〉σc2)2with, σb=−σ22+〈−σ33〉
Crush mode:(11) F5=(〈p〉σc)2with, p=−σ11+σ22+σ333
Shear failure matrix mode:(12) F6=(σ12σm12)2Matrix failure mode:(13) F7=S2del[(〈σ33〉σt3)2+(σ23S23)2+(σ13S13)2]Where,
S13=σm13+〈−σ33〉tanϕS23=σm23+〈−σ33〉tanϕ
If the damage parameter is Fi ≥ 1.0, the stresses are decreased by using an exponential function to avoid numerical instabilities. A relaxation technique is used by decreasing the stress gradually:(14) σ(t)=f(t)⋅σd(tr)With,(15) f(t)=exp(−t−trτmax)and t≥tr
Where,- t
- Time
- tr
- Start time of relaxation when the damage criteria is assumed
- τmax
- Time of dynamic relaxation
- σd(tr)
- Stress at the beginning of damage
- Uni-directional lamina model:
- The damage value, D is 0 ≤ D ≤ 1. The
status for fracture is:
- Free, if 0 ≤ D > 1
- Failure, if D=1
with D=Max(F1,F2,F3,F4,F5) for uni-directional lamina model and D=Max(F1,F2,F3,F4,F5,F6,F7) for fabric lamina model. This damage value shows with /ANIM/BRICK/DAMA or /ANIM/SHELL/DAMA.
- The fail_ID is used with /STATE/BRICK/FAIL and /INIBRI/FAIL. There is no default value. If the line is blank, no value will be output for failure model variables in the /INIBRI/FAIL (written in .sta file with /STATE/BRICK/FAIL option).
- After the failure criterion is reached, the τmax value determines a period of time when the stress in the failed element is gradually reduced to zero. When the stress reaches 1% of the stress value at the start of failure, the element is deleted. This is necessary to avoid instabilities coming from a sudden element deletion and a failure “chain reaction” in the neighboring elements. Even if the failure criterion is reached, the default value of τmax=1.0E30 results in no element deletion. Therefore, it is recommended to define τmax 10 times larger than the simulation time step.
- The I_Dam option improves damage calculation and stability calculating damage.