/PROP/TYPE44 (SPR_CRUS)
Block Format Keyword This is a spring element property, which represents a simple macro model of a crushable frame in compression, tension, torsion and bending.
Originally, this element was developed in cooperation with PSA PEUGEOT CITROËN.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/PROP/TYPE44/prop_ID/unit_ID or /PROP/SPR_CRUS/prop_ID/unit_ID | |||||||||
prop_title | |||||||||
Mass/ L | Inertia / L | Kinter | Skew_ID | Icoupling | Ifiltr | ||||
K11L | K44L | K55L | K66L | Idamp | |||||
K5bL | K6cL | ||||||||
fct_X+i | fct_X-i | fct_X-r | Fscale_XY | ||||||
fct_XX+i | fct_XX--i | fct_XX+r | fct_XX--r | Fscale_XXY | |||||
fct_YY1+i | fct_YY1-i | fct_YY1+r | fct_YY1-r | Fscale_YY1Y | |||||
fct_ZZ1+i | fct_ZZ1-i | fct_ZZ1+r | fct_ZZ1-r | Fscale_ZZ1Y | |||||
fct_YY2+i | fct_YY2-i | fct_YY2+r | fct_YY2-r | Fscale_YY2Y | |||||
fct_ZZ2+i | fct_ZZ2-i | fct_ZZ2+r | fct_ZZ2-r | Fscale_ZZ2Y | |||||
X_lim_g | X_lim | XX_lim | |||||||
YY1_lim | ZZ1_lim | YY2_lim | ZZ2_lim |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_D_x | Dscale_x | F_x | |||||||
fct_D_y | Dscale_y | F_y | |||||||
fct_D_z | Dscale_z | F_z | |||||||
fct_D_xx | Dscale_xx | F_xx | |||||||
fct_D_yy | Dscale_yy | F_yy | |||||||
fct_D_zz | Dscale_zz | F_zz |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
prop_ID | Property
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
prop_title | Property
title. (Character, maximum 100 characters) |
|
Mass/ L | Frame mass per unit
length. (Real) |
|
Inertia / L | Frame inertia per unit
length. (Real) |
|
Kinter | Contact interface
stiffness
. 2
(Real) |
|
Skew_ID | Skew system
identifier. (Integer) |
|
Icoupling | Coupling flag. 3
(Integer) |
|
K11L | Tensile / Compression
stiffness, multiplied by L. (Real) |
|
K44L | Torsional stiffness around
X axis, multiplied by L. (Real) |
|
K55L | Bending Y stiffness around
Y axis, multiplied by L. (Real) |
|
K66L | Bending Z stiffness around
Z axis, multiplied by L. (Real) |
|
K5bL | Shear Bending XY stiffness
axis, multiplied by L. (Real) |
|
K6cL | Shear Bending XZ stiffness
axis, multiplied by L. (Real) |
|
fct_X+i | Tensile force function
versus strain in X direction. (Integer) |
|
fct_X-i | Initial compression force
function versus strain in X-direction. Used for elements in the
initial state. 4 (Integer) |
|
fct_X-r | Residual compression force
function versus strain in X direction. Used for elements in the
residual state. 4 (Integer) |
|
Fscale_XY | Ordinate scale factor for
tensile functions. Default = 1 (Real) |
|
fct_XX+i | Initial torsion moment
function versus torsion angle in the positive direction. Used for
elements in the initial state. (Integer) |
|
fct_XX-i | Initial torsion moment
function versus torsion angle in the negative direction. Used for
elements in the initial state. (Integer) |
|
fct_XX+r | Residual torsion moment
function versus torsion angle in the positive direction. Used for
elements in the residual state. (Integer) |
|
fct_XX-r | Residual torsion moment
function versus torsion angle in the negative direction. Used for
elements in the residual state. (Integer) |
|
Fscale_XXY | Ordinate scale factor for
torsion moment functions. Default = 1 (Real) |
|
fct_YY1+i | Initial bending Y moment
function versus bending angle in the positive direction for node 1.
Used for elements in the initial state. (Integer) |
|
fct_YY1-i | Initial bending Y moment
function versus bending angle in the negative direction for node 1.
Used for elements in the initial state. (Integer) |
|
fct_YY1+r | Residual bending Y moment
function versus bending angle in the positive direction for node 1.
Used for elements in the residual state. (Integer) |
|
fct_YY1-r | Residual bending Y moment
function versus bending angle in the negative direction for node 1.
Used for elements in the residual state. (Integer) |
|
Fscale_YY1Y | Ordinate scale factor for
bending Y moment functions for node 1. Default = 1 (Real) |
|
fct_ZZ1+i | Initial bending Z moment
function versus bending angle in the positive direction for node 1.
Used for elements in the initial state. (Integer) |
|
fct_ZZ1-i | Initial bending Z moment
function versus bending angle in the negative direction for node 1.
Used for elements in the initial state. (Integer) |
|
fct_ZZ1+r | Residual bending Z moment
function versus bending angle in the positive direction for node 1.
Used for elements in the residual state. (Integer) |
|
fct_ZZ1-r | Residual bending Z moment
function versus bending angle in the negative direction for node 1.
Used for elements in the residual state. (Integer) |
|
Fscale_ZZ1Y | Ordinate scale factor for
bending Z moment functions for node 1. Default = 1 (Real) |
|
fct_YY2+i | Initial bending Y moment
function versus bending angle in the positive direction for node 2.
Used for elements in the initial state. (Integer) |
|
fct_YY2-i | Initial bending Y moment
function versus bending angle in the negative direction for node 2.
Used for elements in the initial state. (Integer) |
|
fct_YY2+r | Residual bending Y moment
function versus bending angle in the positive direction for node 2.
Used for elements in the residual state. (Integer) |
|
fct_YY2-r | Residual bending Y moment
function versus bending angle in the negative direction for node 2.
Used for elements in the residual state. (Integer) |
|
Fscale_YY2Y | Ordinate scale factor for
bending Y moment functions for node 2. Default = 1 (Real) |
|
fct_ZZ2+i | Initial bending Z moment
function versus bending angle in the positive direction for node 2.
Used for elements in the initial state. (Integer) |
|
fct_ZZ2-i | Initial bending Z moment
function versus bending angle in the negative direction for node 2.
Used for elements in the initial state. (Integer) |
|
fct_ZZ2+r | Residual bending Z moment
function versus bending angle in the positive direction for node 2.
Used for elements in the residual state. (Integer) |
|
fct_ZZ2-r | Residual bending Z moment
function versus bending angle in the negative direction for node 2.
Used for elements in the residual state. (Integer) |
|
Fscale_ZZ2Y | Ordinate scale factor for
bending Z moment functions for node 2. Default = 1 (Real) |
|
X_lim_g | Global strain limit in X
direction to switch the elements and neighboring frame elements from
initial into residual state. This indicates the frame element is
completely collapsed. (Real) |
|
X_lim | Same as before, but the
switch occurs when strains in the X-direction exceed the
limit. (Real) |
|
XX_lim | Same as before, but the
switch occurs when shear strains in the XX-direction (torsion)
exceeds the limit. (Real) |
|
YY1_lim | Same as before, but the
switch occurs when shear strains in the YY-direction on node 1
exceeds the limit. For neighboring element sharing node 1, all DOFs
linked to the node will be switched to the residual
state. (Real) |
|
ZZ1_lim | Same as before, but the
switch occurs when shear strains in the ZZ-direction on node 1
exceeds the limit. For neighboring element sharing node 1, all DOFs
linked to the node will be switched to the residual
state. (Real) |
|
YY2_lim | Same as before, but the
switch occurs when shear strains in the YY-direction on node 2
exceeds the limit. For neighboring element sharing node 2, all DOFs
linked to the node will be switched to the residual
state. (Real) |
|
ZZ2_lim | Same as before, but the
switch occurs when shear strains in the ZZ-direction on node 2
exceeds the limit. For neighboring element sharing node 2, all DOFs
linked to the node will be switched to the residual
state. (Real) |
|
Ifiltr | Strain rate filtering flag.
(Integer) |
|
Idamp | Damping flag.
(Integer) |
|
fct_D_x | Damping force-elongation rate curve for X - DOF. | |
fct_D_y | Damping force-elongation rate curve for Y - DOF. | |
fct_D_z | Damping force-elongation rate curve for Z - DOF. | |
fct_D_xx | Damping force-elongation rate curve for XX - DOF. | |
fct_D_yy | Damping force-elongation rate curve for YY - DOF. | |
fct_D_zz | Damping force-elongation rate curve for ZZ - DOF. | |
Dscale_x | Linear damping or function
damping scale factor for X – DOF. Default = 1 (See Comment 10) (Real) |
or |
Dscale_y | Linear damping or function
damping scale factor for Y – DOF. Default = 1 (See Comment 10) (Real) |
or |
Dscale_z | Linear damping or function
damping scale factor for Z – DOF. Default = 1 (See Comment 10) (Real) |
or |
Dscale_xx | Linear damping or function
damping scale factor for XX – DOF. Default = 1 (See Comment 10) (Real) |
or |
Dscale_yy | Linear damping or function
damping scale factor for YY – DOF. Default = 1 (See Comment 10) (Real) |
or |
Dscale_zz | Linear damping or function
damping scale factor for ZZ – DOF. Default = 1 (See Comment 10) (Real) |
or |
F_x | Abscissa scale factor on Force-elongation rate curve X -
DOF. Default = 1 (See Comment 10) (Real) |
|
F_y | Abscissa scale factor on
Force-elongation rate curve Y - DOF. Default = 1 (See Comment 10) (Real) |
|
F_z | Abscissa scale factor on
Force-elongation rate curve Z - DOF. Default = 1 (See Comment 10) (Real) |
|
F_xx | Abscissa scale factor on
Force-elongation rate curve XX - DOF. Default = 1 (See Comment 10) (Real) |
|
F_yy | Abscissa scale factor on
Force-elongation rate curve YY - DOF. Default = 1 (See Comment 10) (Real) |
|
F_zz | Abscissa scale factor on
Force-elongation rate curve ZZ - DOF. Default = 1 (See Comment 10) (Real) |
Example
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 1. LOCAL_UNIT_SYSTEM:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/2
unit for prop
# MUNIT LUNIT TUNIT
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. GEOMETRICAL SETS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/PROP/TYPE44/2/2
prop44 example
# MASS/L INERTIA/L Kinter Skew_Id Icoupling Ifilter
.01267 52 0 0 0 0
# K11 K44 K55 K66 Idamp
341270000 645300000 17692570000 27269000000 0
# K5b K6c
200000000 300000000
#FUNCT_X+I FUNCT_X-I FUNCT_X-R FSCALE_XY
1000 1001 1002 0
#FUNCTXX+I FUNCTXX-I FUNCTXX+R FUNCTXX-R FSCALE_XXY
1010 1011 1012 1013 0
#FUNCYY1+I FUNCYY1-I FUNCYY1+R FUNCYY1-R FSCALEYY1Y
1020 1021 1022 1023 0
#FUNCZZ1+I FUNCZZ1-I FUNCZZ1+R FUNCZZ1-R FSCALEZZ1Y
1030 1031 1032 1033 0
#FUNCYY2+I FUNCYY2-I FUNCYY2+R FUNCYY2-R FSCALEYY2Y
1020 1021 1022 1023 0
#FUNCZZ2+I FUNCZZ2-I FUNCZZ2+R FUNCZZ2-R FSCALEZZ2Y
1030 1031 1032 1033 0
# X_lim_g X_lim XX_lim
-.709 -.0455 .34
# YY1_lim ZZ1_lim YY2_lim ZZ2_lim
.137 .1396 .138 .1393
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1000
fct_X+i (tension, initial state)
# X Y
-1 10000
0 10000
.0012 44500
1 44500
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1001
fct_X-i (compression, initial state)
# X Y
-.9 -71200
-.865 -45100
-.777 -27500
-.708 -14300
-.0488 -14200
-.0454 -14700
-.0299 -21300
-.0238 -39700
-.02 -44500
0 -38100
1 -38100
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1002
fct_X-r (compression, collapsed state)
# X Y
-.9 -71300
-.865 -45200
-.777 -27600
-.708 -14000
1 -14000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1010
fct_XX+i (initial state)
# X Y
-1 464000
0 464000
.12 486000
.16 479000
.19 453000
.34 193000
.8 70000
1.6 181000
3.3 84000
5 84000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1011
fct_XX-i (initial state)
# X Y
-5 -84000
-3.3 -84000
-1.6 -181000
-.8 -70000
-.34 -193000
-.19 -453000
-.16 -479000
-.12 -486000
0 -464000
1 -464000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1012
fct_XX+r (collapsed state)
# X Y
-1 193000
.34 193000
.8 70000
1.6 181000
3.3 84000
5 84000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1013
fct_XX-r (collapsed state)
# X Y
-5 -84000
-3.3 -84000
-1.6 -181000
-.8 -70000
-.34 -193000
1 -193000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1020
fct_YY1+i, fct_YY2+i (initial state)
# X Y
-1 800000
0 800000
.051 895000
.082 799000
.135 534000
.24 370000
.32 315000
1 315000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1021
fct_YY1-i, fct_YY2-i (initial state)
# X Y
-1 -315000
-.32 -315000
-.24 -370000
-.135 -534000
-.082 -799000
-.051 -895000
0 -800000
1 -800000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1022
fct_YY1+r, fct_YY2+r (collapsed state)
# X Y
-1 150000
-.9 150000
-.6 178000
-.45 250000
-.3 462000
-.2 663000
-.15 717000
-.1 674000
.135 534000
.24 370000
.32 315000
1 315000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1023
fct_YY1-r, fct_YY2-r (collapsed state)
# X Y
-1 -315000
-.32 -315000
-.24 -370000
-.135 -534000
.1 -674000
.15 -717000
.2 -663000
.3 -462000
.45 -250000
.6 -178000
.9 -150000
1 -150000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1030
fct_ZZ1+i, fct_ZZ2+i (initial state)
# X Y
-1 500000
0 500000
.0255 700000
.051 700000
.1395 380000
.3375 250000
1 250000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1031
fct_ZZ1-i, fct_ZZ2-i (initial state)
# X Y
-1 -250000
-.3375 -250000
-.1395 -380000
-.051 -700000
-.0255 -700000
0 -500000
1 -500000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1032
fct_ZZ1+r, fct_ZZ2+r (collapsed state)
# X Y
-1 110000
-.45 110000
-.15 442000
-.1 491000
-.05 478000
.1395 380000
.3375 250000
1 250000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1033
fct_ZZ1-r, fct_ZZ2-r (collapsed state)
# X Y
-1 -250000
-.3375 -250000
-.1395 -380000
.05 -478000
.1 -491000
.15 -442000
.45 -110000
1 -110000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- This property is linked to two node spring elements.
- Kinter is used to calculate interface stiffness when the frame element is referred in a contact.
- If Icoupling =1, moments generated by forces are accounted in the global moment balance for each frame element (similar to Iequil =1 flag for spring /PROP/TYPE8 (SPR_GENE)).
- To reproduce buckling behavior of a chain of the crushable frames, it is assumed that each element can be either in initial state or in residual state (collapsed). Initially all crushable frame elements are in the initial state and corresponding "initial" force strain curves are used. When the strain becomes higher than the limit X_lim_g for a particular element, the element is switched into residual state. Afterwards, only "residual" force strain curves are used for this element for all DOFs. At the same time, information is sent to the attached frame elements (left and right, defined with property TYPE44 only) and all directions on the both nodes of these elements switch to the residual state.
- When the value X_lim and/or XX_lim are reached, all DOFs on the both elements nodes switch to the residual state. Neighboring elements also switch to residual state.
- When the value YYi_lim and/or ZZi_lim are reached, all DOFs linked to the node of the element, i switch to residual state. Neighboring element, which share the node, also switch to residual state.
- The function fct_X+i or fct_XX+i is linked to both nodes of the frame element.
- If skew is defined in the
property, the Z-direction is:
(1) - If no skew frame is assigned in the property set, the Z-direction
is:
(2) - If the damping function is defined, the damping function formula is used
instead linear damping.
- Force linear damping:
- with ( - DOF)
- Force function damping:
- with ( - DOF)