/H3D/SHELL

Engine Keyword Generate H3D contour output results for /SHELL and /SH3N shell elements.

Format

/H3D/SHELL/Keyword3/Keyword4/Keyword5

#optional next line(s) that lists the parts to save results for.

part_ID1 ... part_IDN

Examples

# Stress tensor results for ply=1 and all integration points. The order of PLY and NPT does not matter.
/H3D/SHELL/TENS/STRESS/PLY=1/NPT=ALL
/H3D/SHELL/TENS/STRESS/NPT=ALL/PLY=1
# Stress tensor results for all integration points
/H3D/SHELL/TENS/STRESS/NPT=ALL
# Specific energy density results for only parts IDs 356 and 293.
/H3D/SHELL/ENER
356 293
# User variable #12 results for all integration points.
/H3D/SHELL/USER/NPT=ALL/UVAR=12

Definition

Field Contents SI Unit Example
Keyword3 Output types. 3  
Keyword4 Output types. 3  
Keyword5 Output types. 3  
part_IDN Optional list of part IDs for which results will be output.  

Comments

  1. The syntax /H3D/ELEM/Keyword3/Keyword4/Keyword5 is also valid.
  2. When PART IDs are listed after the /H3D/SHELL line the specified results will output only for those parts.
  3. Output can be a, scalar, vector, or tensor as defined in the following tables.
    Table 1. Scalar Output
    Keyword3 Keyword4 Description
    ALPHA
    PLY=
    I or ALL
    LAYER=
    I or ALL
    Shear angle alpha of material /MAT/LAW58 in degrees.
    AMS   Elements using AMS timestep due to /DT/CST_AMS.
    BULK   Artificial Viscosity
    DAM1, DAM2, DAM3   Principal damage values in local orthotropic skew direction 1, 2 or 3 for materials LAW15 and LAW25.
    DAMA
    MEMB
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Maximum of damage over time of all /FAIL criteria acting on one material. Refer to the specific /FAIL law used for how damage is calculated.
    TMAX Maximum of damage over time, integration points and failure models.
    DAMG
    MEMB
    NPT=
    I, ALL, LOWER or UPPER
    Mean damage over thickness integration points (only for coupled damage models). 8
    DAMINI
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Maximum damage initiation variable among all failure criteria using initiation variable before computing stress softening (/FAIL/INIEVO).
    DENS   Density
    DOMAIN   SPMD domain number of an element.
    DT   Element timestep
    EINT   Element internal energy
    ENER   Specific energy density (internal energy divided by the element mass)
    TMAX Maximum specific energy density over time
    EPSD   Equivalent strain rate
    EPSP
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Plastic strain
    ERROR THICK Estimated error on shell thickness
    FAIL
    PLY=
    I or ALL
    Number of failed layers for /PROP/TYPE10, /PROP/TYPE11, /PROP/TYPE17, /PROP/TYPE51, /PCOMPP, /MAT/LAW15 and /MAT/LAW25. For the other property sets and material laws the values are: no failure =0 and element failed =1.
    FLDF
    MEMB
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    FLD damage factor indicator. 6
    FLDZ
    MEMB
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    FLD failure zone factor for the FLD failure model. 7
    = 1
    Loose metal
    = 2
    High wrinkle
    = 3
    Compression
    = 4
    Safe
    = 5
    Marginal
    = 6
    Failure
    GROUP   Internal group identifier
    HOURGLASS   Hourglass Energy
    MASS   Element mass
    MDS   Automatic selection of user variable to output according to MDS law that is used.

    (1 value per user variable and per ply in case of stack and ply)

    MDS
    MDS_VAR =
    DEF or ALL (mandatory)
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    MDS user variables
    NL_EPSD
    NPT=
    I, ALL, LOWER or UPPER
    Non-local plastic strain rate (only if /NONLOCAL/MAT is activated) 10
    NL_EPSP
    NPT=
    I, ALL, LOWER or UPPER
    Non-local plastic strain (only if /NONLOCAL/MAT is activated) 10
    NXTF
    MEMB
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Instability factor of /FAIL/NXT failure model
    OFF   Element status.
    Where the result output is:
    = -1
    Element is not active (it is defined in an activated rigid body).
    = 0
    Deleted element.
    Between 0 and 1
    Under failure process.
    = 1
    Active element.
    PEXT   External pressure applied on shell element coming from /PLOAD, /LOAD/PFLUID, /LOAD/PBLAST or /LOAD/PRESSURE.
    PHI
    MEMB
    PLY=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Angle between the element system and direction 1 orthotropy
    SIGEQ   Equivalent stress based on a material’s yield criteria. Some examples of yield criteria are von Mises, Hill or Barlat.
    TMAX Maximum equivalent stress based on a material’s yield criteria over time and integration points.
    SIGX, SIGY, SIGZ, SIGXY, SIGYZ, SIGZX   Stress in specified direction
    TDEL   Time at which element is deleted, due to failure defined using /FAIL criterion. Failure criteria built in materials is ignored.
    TEMP   Temperature
    THICK   Thickness
    THIN   % thinning for shell.
    TSAIWU
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Tsai Wu criterion for material /MAT/LAW15 (CHANG) and /MAT/LAW25 (COMPSH)
    USER
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    UVAR=
    I or ALL
    User material (/MAT/USERij) law output for user-defined variable i. Also, requests USR output for some Radioss material laws such as LAW58. USR1 output is requested using UVAR=1.
    VONM   von Mises stress at neutral fiber
    TMAX Maximum von Mises stress at neutral fiber over time and integration points
    WPLA
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Plastic work for /MAT/LAW15 (CHANG) and /MAT/LAW25 (COMPSH)
    Table 2. Tensor Output
    Keyword3 Keyword4 Keyword5 Description
    TENS BSTRESS
    ID=
    n or ALL
    MEMB
    BEND
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I or ALL
    Backstress tensor for material /MAT/LAW36 (n=1) and /MAT/LAW78 (n=1, 2 or 3) and /MAT/LAW87 (n=1, 2, 3 or 4).

    ID=-1 returns the sum of all backstress tensors available for the element.

    EPSDOT
    MEMB
    BEND
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I or ALL
    Strain rate tensor
    STRAIN
    MEMB
    BEND
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I, ALL, LOWER or UPPER
    Strain tensor
    TMAX Strain tensor corresponding to the maximum principal strain (P1) over time and integration points.

    Strain tensor corresponding to the minimum principal strain (P3) over time and integration points.

    STRAIN_ENG -- Infinitesimal total strain. Only one tensor per element.
    STRESS
    MEMB
    BEND
    PLY=
    I or ALL
    LAYER=
    I or ALL
    NPT=
    I or ALL
    Stress tensor
    TMAX Stress tensor corresponding to the maximum principal stress (P1) over time and integration points.

    Stress tensor corresponding to the minimum principal stress (P3) over time and integration points.

  4. The output location in Keyword4 and Keyword5 can be defined via:
    NPT
    Integration points.
    LAYER
    Composite shell layer when using /PROP/TYPE11 (SH_SANDW), /PROP/TYPE10 (SH_COMP).
    PLY
    Composite shell ply when using, /PROP/TYPE19 (PLY) or /PLY.
    MEMB
    Generalized membrane stresses per element. Cannot be used with NPT, LAYER or PLY options.
    BEND
    Generalized bending stresses per element. Cannot be used with NPT, LAYER or PLY options.
  5. Output can be requested for a specific location number (I), ALL, and in some case UPPER or LOWER. The output locations are separated by a / and can be in any order.
  6. The values of FLD damage factor is equal to the ratio of the actual major principal strain value over the forming limit curve value:(1)
    FLDF=εmajorεlim MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadYeacaWGebGaamOraiabg2da9maalaaabaGaeqyTdu2aaSbaaSqaaiaad2gacaWGHbGaamOAaiaad+gacaWGYbaabeaaaOqaaiabew7aLnaaBaaaleaaciGGSbGaaiyAaiaac2gaaeqaaaaaaaa@456F@

    Where, εlim MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiGacYgacaGGPbGaaiyBaaqabaaaaa@3A9A@ is the major principal strain at failure limit from FLD diagram (fct_ID in /FAIL/FLD).

    The FLD compares the εmajor MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGHbGaamOAaiaad+gacaWGYbaabeaaaaa@3C7C@ and εlim MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiGacYgacaGGPbGaaiyBaaqabaaaaa@3A9A@ using the same εminor MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGPbGaamOBaiaad+gacaWGYbaabeaaaaa@3C88@ .


    Figure 1.

    FLDF may be greater than 1, if the option /FAIL/FLD, Ifail_sh=4 is used. In this case, the damage factor is only calculated for post-processing and no elements are deleted.

  7. The values of FLD zone index are defined as:
    FLDZ=6
    Failure
    εmajor>εlim MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGHbGaamOAaiaad+gacaWGYbaabeaakiabg6da+iabew7aLnaaBaaaleaaciGGSbGaaiyAaiaac2gaaeqaaaaa@4231@
    FLDZ=5
    Marginal
    εlim>εmajor>εmarginal MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiGacYgacaGGPbGaaiyBaaqabaGccqGH+aGpcqaH1oqzdaWgaaWcbaGaamyBaiaadggacaWGQbGaam4BaiaadkhaaeqaaOGaeyOpa4JaeqyTdu2aaSbaaSqaaiaad2gaciGGHbGaaiOCaiaacEgacaWGPbGaamOBaiaadggacaWGSbaabeaaaaa@4C88@
    FLDZ=4
    Safe
    εmarginal>εmajor>|εminor| MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gaciGGHbGaaiOCaiaacEgacaWGPbGaamOBaiaadggacaWGSbaabeaakiabg6da+iabew7aLnaaBaaaleaacaWGTbGaamyyaiaadQgacaWGVbGaamOCaaqabaGccqGH+aGpdaabdaqaaiabew7aLnaaBaaaleaacaWGTbGaamyAaiaad6gacaWGVbGaamOCaaqabaaakiaawEa7caGLiWoaaaa@51A2@
    FLDZ=3
    Compression
    εminor>εmajor>εminorRani1+Rani MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeqyTdu2aaSbaaSqaaiaad2gacaWGPbGaamOBaiaad+gacaWGYbaabeaakiabg6da+iabew7aLnaaBaaaleaacaWGTbGaamyyaiaadQgacaWGVbGaamOCaaqabaGccqGH+aGpcqGHsislcqaH1oqzdaWgaaWcbaGaamyBaiaadMgacaWGUbGaam4BaiaadkhaaeqaaOGaeyyXIC9aaSaaaeaacaWGsbWaaSbaaSqaaiaadggacaWGUbGaamyAaaqabaaakeaacaaIXaGaey4kaSIaamOuamaaBaaaleaacaWGHbGaamOBaiaadMgaaeqaaaaaaaa@593B@
    FLDZ=2
    High wrinkle
    εminorRani1+Rani>εmajor MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeqyTdu2aaSbaaSqaaiaad2gacaWGPbGaamOBaiaad+gacaWGYbaabeaakiabgwSixpaalaaabaGaamOuamaaBaaaleaacaWGHbGaamOBaiaadMgaaeqaaaGcbaGaaGymaiabgUcaRiaadkfadaWgaaWcbaGaamyyaiaad6gacaWGPbaabeaaaaGccqGH+aGpcqaH1oqzdaWgaaWcbaGaamyBaiaadggacaWGQbGaam4Baiaadkhaaeqaaaaa@50AB@
    FLDZ=1
    Loose metal
    εmajor2+εminor2>Factor_Loosemetal2 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGHbGaamOAaiaad+gacaWGYbaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiabew7aLnaaBaaaleaacaWGTbGaamyAaiaad6gacaWGVbGaamOCaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGH+aGpcaWGgbGaamyyaiaadogacaWG0bGaam4BaiaadkhacaGGFbGaamitaiaad+gacaWGVbGaam4CaiaadwgacaWGTbGaamyzaiaadshacaWGHbGaamiBamaaCaaaleqabaGaaGOmaaaaaaa@5781@


    Figure 2.
    Where,
    fct_ID
    Defined in /FAIL/FLD
    εlim MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiGacYgacaGGPbGaaiyBaaqabaaaaa@3A9A@
    Major strain as a limit from FLD diagram from fct_ID in /FAIL/FLD
    εminor MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGPbGaamOBaiaad+gacaWGYbaabeaaaaa@3C88@ and εmajor MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gacaWGPbGaamOBaiaad+gacaWGYbaabeaaaaa@3C88@
    The minimum and maximum principal strains
    Rani
    Average anisotropy factor defined in FLD input in /FAIL/FLD
    Factor_Marginal MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadggacaWGJbGaamiDaiaad+gacaWGYbGaai4xaiaadYeacaWGVbGaam4BaiaadohacaWGLbGaamyBaiaadwgacaWG0bGaamyyaiaadYgaaaa@459E@
    Defined in FLD input in /FAIL/FLD
    Factor_Loosemetal MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadggacaWGJbGaamiDaiaad+gacaWGYbGaai4xaiaadYeacaWGVbGaam4BaiaadohacaWGLbGaamyBaiaadwgacaWG0bGaamyyaiaadYgaaaa@459E@
    Defined in FLD input in /FAIL/FLD
    (2)
    α=arctan(Rani1+Rani) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyypa0JaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaacqGHsisldaWcaaqaaiaadkfadaWgaaWcbaGaamyyaiaad6gacaWGPbaabeaaaOqaaiaaigdacqGHRaWkcaWGsbWaaSbaaSqaaiaadggacaWGUbGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@49FA@
    I_marg
    Defined in FLD input in /FAIL/FLD
    If I_marg = 2, the marginal curve is defined by shifting the FLD curve with the constant value Factor_Marginal MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadggacaWGJbGaamiDaiaad+gacaWGYbGaai4xaiaadYeacaWGVbGaam4BaiaadohacaWGLbGaamyBaiaadwgacaWG0bGaamyyaiaadYgaaaa@459E@ .(3)
    εmarginal=εlimFactor_Marginal MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gaciGGHbGaaiOCaiaacEgacaWGPbGaamOBaiaadggacaWGSbaabeaakiabg2da9iabew7aLnaaBaaaleaaciGGSbGaaiyAaiaac2gaaeqaaOGaeyOeI0ceaaaaaaaaa8qacaWGgbGaamyyaiaadogacaWG0bGaam4BaiaadkhacaGGFbGaamytaiaadggacaWGYbGaam4zaiaadMgacaWGUbGaamyyaiaadYgaaaa@53B6@
    If I_marg = 3, the marginal curve is defined as a factor of the Factor_Marginal MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadggacaWGJbGaamiDaiaad+gacaWGYbGaai4xaiaadYeacaWGVbGaam4BaiaadohacaWGLbGaamyBaiaadwgacaWG0bGaamyyaiaadYgaaaa@459E@ .(4)
    εmarginal=εlim1Factor_Marginal MathType@MTEF@5@5@+=feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaSqaaiaad2gaciGGHbGaaiOCaiaacEgacaWGPbGaamOBaiaadggacaWGSbaabeaakiabg2da9iabew7aLnaaBaaaleaaciGGSbGaaiyAaiaac2gaaeqaaOWaaeWaaeaaqaaaaaaaaaWdbiaaigdacqGHsislcaWGgbGaamyyaiaadogacaWG0bGaam4BaiaadkhacaGGFbGaamytaiaadggacaWGYbGaam4zaiaadMgacaWGUbGaamyyaiaadYgaa8aacaGLOaGaayzkaaaaaa@5608@
  8. Option DAMG is only used with coupled damage models (/MAT/LAW72 or /FAIL/GURSON) to output damage over integration points. The damage variable is normalized by its critical value.
    • For /MAT/LAW72(5)
      Dmg=DDC MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiramaaBaaaleaacaWGTbGaam4zaaqabaGccqGH9aqpdaWcaaWdaeaapeGaamiraaWdaeaapeGaamiramaaBaaaleaacaWGdbaabeaaaaaaaa@3CC0@
    • For /FAIL/GURSON(6)
      Dmg=ftfF MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiramaaBaaaleaacaWGTbGaam4zaaqabaGccqGH9aqpdaWcaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qacaWGMbWdamaaBaaaleaapeGaamOraaWdaeqaaaaaaaa@3E83@
  9. When using global integration (N=0 in the shell property), Radioss always outputs the stress and strain only in the midplane (MEMB).
  10. If /NONLOCAL/MAT option is activated, it is possible to output the regularized non-local plastic strain and its rate.
  11. The damage initiation variable /H3D/SHELL/DAMINI is used with some failure criteria such as /FAIL/INIEVO, which first computes a damage initiation criterion before computing the stress softening damage variable, which can be plotted with /H3D/SHELL/DAMA.